57 research outputs found

    Two ideals connected with strong right upper porosity at a point

    Get PDF
    Let SPSP be the set of upper strongly porous at 00 subsets of R+\mathbb R^{+} and let I^(SP)\hat I(SP) be the intersection of maximal ideals ISPI \subseteq SP. Some characteristic properties of sets EI^(SP)E\in\hat I(SP) are obtained. It is shown that the ideal generated by the so-called completely strongly porous at 00 subsets of R+\mathbb R^{+} is a proper subideal of I^(SP).\hat I(SP).Comment: 18 page

    Ferromagnetic behavior of ultrathin manganese nanosheets

    Full text link
    Ferromagnetic behaviour has been observed experimentally for the first time in nanostructured Manganese. Ultrathin (\sim 0.6 nm) Manganese nanosheets have been synthesized inside the two dimensional channels of sol-gel derived Na-4 mica. The magnetic properties of the confined system are measured within 2K-300K temperature range. The confined structure is found to show a ferromagnetic behaviour with a nonzero coercivity value. The coercivity value remains positive throughout the entire temperature range of measurement. The experimental variation of susceptibility as a function of temperature has been satisfactorily explained on the basis of a two dimensional system with a Heisenberg Hamiltonian involving direct exchange interaction.Comment: 13 pages, 9 figure

    Long–term hay meadow management maintains the target community despite local-scale species turnover

    Get PDF
    Hay meadows, which are managed using a low intensity regime, are characterised by highly diverse vegetation but have declined significantly since the mid twentieth century. Remaining species-rich meadows are often protected by statutory designations and conservation management agreements. However, long-term studies of change in the composition of meadow vegetation, and investigations of the success of conservation over the long-term are rare. Fourteen sites, which had a long history of being managed for field dried hay, were resurveyed after 25 years and redundancy analysis was undertaken to investigate changes in community composition. Investigations of the effect of soil conditions, site size and spatial distribution of the meadow sites were carried out. Although overall community composition had changed significantly, the suite of species representative of the meadow community had been maintained, and species usually associated with more intensively managed grasslands had declined. However, there were losses of particular species of conservation importance such as Alchemilla glabra and Conopodium majus, and losses and gains of species varied from site to site. There was a significant increase in the homogeneity of the meadow vegetation between the two survey years. Comparisons of indicators of soil conditions suggested that there had been no significant change for the community as a whole but analyses of the species showing the most change indicated a decrease in soil fertility. Low intensity management has been successful in maintaining the meadow community but consideration of changes in key species and losses at the site level is needed. More research is needed to establish whether fragmentation is starting to have an impact on diversity

    Metrology For Advanced Manufacturing – The Networking Project AdvManuNet

    Get PDF
    Advanced Manufacturing is a branch of manufacturing that is considered an important driver for future economic and societal progress. The European Commission (EC) has identified Advanced Manufacturing as one of six Key Enabling Technologies (KETs) with applications across multiple industrial sectors. The networking project JNP19Net01 AdvManuNet funded by EURAMET for four years starting in June 2020 aims to accelerate the process of establishing a European Metrology Network (EMN) to strengthen Europe’s position in Advanced Manufacturing. The consortium to deliver this project comprises National Metrological Institutes (PTB, NPL, INRIM, RISE, CMI, METAS, TUBITAK, GUM), Designated Institutes (BAM), University partners (Politecnico di Torino) and the European Society for Precision Engineering and Nanotechnology (euspen) from across Europe

    What defines insularity for plants in edaphic islands?

    Get PDF
    This work was supported by the Czech Science Foundation (projects 19-14394Y to FEMC, LC and GO; 19-01775S to MHo; 19-28491X to MCh and MHa) and by the long-term research development project no. RVO 67985939 of the Czech Academy of Sciences

    A test on Ellenberg indicator values in the Mediterranean evergreen woods (Quercetea ilicis)

    Get PDF
    The consistency and reliability of Ellenberg’s indicator values (Eiv) as ecological descriptors of the Mediterranean evergreen vegetation ascribed to the phytosociological class Quercetea ilicis have been checked on a set of 859 phytosociological relevés × 699 species. Diagnostic species were identified through a Twinspan analysis and their Eiv analyzed and related to the following independent variables: (1) annual mean temperatures, (2) annual rainfall. The results provided interesting insights to disentangle the current syntaxonomical framework at the alliance level demonstrating the usefulness of ecological indicator values to test the efficiency and predictivity of the phytosociological classification

    A compact null set containing a differentiability point of every Lipschitz function

    Full text link
    We prove that in a Euclidean space of dimension at least two, there exists a compact set of Lebesgue measure zero such that any real-valued Lipschitz function defined on the space is differentiable at some point in the set. Such a set is constructed explicitly.Comment: 28 pages; minor modifications throughout; Lemma 4.2 is proved for general Banach space rather than for Hilbert spac

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore