518 research outputs found
Pencil beam characteristics of the next-generation proton scanning gantry of PSI: design issues and initial commissioning results
In this paper we report on the main design features, on the realization process and on selected first results of the initial commissioning of the new Gantry 2 of PSI for the delivery of proton therapy with new advanced pencil beam scanning techniques. We present briefly the characteristics of the new gantry system with main emphasis on the beam optics, on the characterization of the pencil beam used for scanning and on the performance of the scanning system. The idea is to give an overview of the major components of the whole system. The main long-term technical goal of the new equipment of Gantry 2 is to expand the use of pencil beam scanning to the whole spectrum of clinical indications including moving targets. We report here on the initial experience and problems encountered in the development of the system with selected preliminary results of the ongoing commissioning of Gantry
Impact of loss of high-molecular-weight von Willebrand factor multimers on blood loss after aortic valve replacement
Background Severe aortic stenosis is associated with loss of the largest von Willebrand factor (vWF) multimers, which could affect primary haemostasis. We hypothesized that the altered multimer structure with the loss of the largest multimers increases postoperative bleeding in patients undergoing aortic valve replacement. Methods We prospectively included 60 subjects with severe aortic stenosis. Before and after aortic valve replacement, vWF antigen, activity, and multimer structure were determined and platelet function was measured by impedance aggregometry. Blood loss from mediastinal drainage and the use of blood and haemostatic products were evaluated perioperatively. Results Before operation, the altered multimer structure was present in 48 subjects (80%). Baseline characteristics and laboratory data were similar in all subjects. The median blood loss after 6 h was 250 (105-400) and 145 (85-240) ml in the groups with the altered and normal multimer structures, respectively (P=0.182). After 24 h, the cumulative loss was 495 (270-650) and 375 (310-600) ml in the groups with the altered and normal multimer structures, respectively (P=0.713). Multivariable analysis revealed no significant influence of multimer structure and platelet function on bleeding volumes after 6 and 24 h. After 24 h, there was no obvious difference in vWF antigen, activity, and multimer structure in subjects with and without the altered multimer structure before operation or in subjects with and without perioperative plasma transfusion. Conclusions The altered vWF multimer structure before operation was not associated with increased bleeding after aortic valve replacement. Our findings might be explained by perioperative release of vWF and rapid recovery of the largest vWF multimer
Basic Amino Acid Mutations in the Nuclear Localization Signal of Hibiscus Chlorotic Ringspot Virus p23 Inhibit Virus Long Distance Movement
10.1371/journal.pone.0074000PLoS ONE89-POLN
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Cell-cycle-dependent transcriptional and translational DNA-damage response of 2 ribonucleotide reductase genes in S. cerevisiae
The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells suggest that RNR mRNA production is maximal in late G1 and S phases; however, damaged DNA induces RNR transcription throughout the cell cycle. But such en masse measurements reveal neither cell-to-cell heterogeneity in responses nor direct correlations between transcript and protein expression or localization in single cells which may be central to function. We overcame these limitations by simultaneous detection of single RNR transcripts and also Rnr proteins in the same individual asynchronous S. cerevisiae cells, with and without DNA damage by methyl methanesulfonate (MMS). Surprisingly, RNR subunit mRNA levels were comparably low in both damaged and undamaged G1 cells and highly induced in damaged S/G2 cells. Transcript numbers became correlated with both protein levels and localization only upon DNA damage in a cell cycle-dependent manner. Further, we showed that the differential RNR response to DNA damage correlated with variable Mec1 kinase activity in the cell cycle in single cells. The transcription of RNR genes was found to be noisy and non-Poissonian in nature. Our results provide vital insight into cell cycle-dependent RNR regulation under conditions of genotoxic stress.Massachusetts Institute of Technology. Center for Environmental Health Sciences (deriving from NIH P30-ES002109)National Institutes of Health (U.S.) (grant R01-CA055042)National Institutes of Health (U.S.) (grant DP1-OD006422)Massachusetts Institute of Technology (CSBi Merck-MIT Fellowship
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Effect of promoter architecture on the cell-to-cell variability in gene expression
According to recent experimental evidence, the architecture of a promoter,
defined as the number, strength and regulatory role of the operators that
control the promoter, plays a major role in determining the level of
cell-to-cell variability in gene expression. These quantitative experiments
call for a corresponding modeling effort that addresses the question of how
changes in promoter architecture affect noise in gene expression in a
systematic rather than case-by-case fashion. In this article, we make such a
systematic investigation, based on a simple microscopic model of gene
regulation that incorporates stochastic effects. In particular, we show how
operator strength and operator multiplicity affect this variability. We examine
different modes of transcription factor binding to complex promoters
(cooperative, independent, simultaneous) and how each of these affects the
level of variability in transcription product from cell-to-cell. We propose
that direct comparison between in vivo single-cell experiments and theoretical
predictions for the moments of the probability distribution of mRNA number per
cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte
- …
