647 research outputs found
Case Notes
For decades, optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transients have been identified(1-5). These have peak luminosities comparable to type Ia supernovae, but rise to maximum in less than ten days and fade from view in less than one month. Here we present the most extreme example of this class of object thus far: KSN 2015K, with a rise time of only 2.2 days and a time above half-maximum of only 6.8 days. We show that, unlike type Ia supernovae, the light curve of KSN 2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN 2015K is well fitted by a model where the supernova runs into external material presumably expelled in a pre-supernova mass-loss episode. The rapid rise of KSN 2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.NASA
NNH15ZDA001N
NNX17AI64G
Australian Research Council Centre of Excellence for All-sky Astrophysics
CE11000102
Star-Forming Brightest Cluster Galaxies at 0.25 < z < 1.25: A Transitioning Fuel Supply
We present a multi-wavelength study of 90 brightest cluster galaxies (BCGs)
in a sample of galaxy clusters selected via the Sunyaev Zel'dovich effect by
the South Pole Telescope, utilizing data from various ground- and space-based
facilities. We infer the star formation rate (SFR) for the BCG in each cluster,
based on the UV and IR continuum luminosity, as well as the [O II] emission
line luminosity in cases where spectroscopy is available, finding 7 systems
with SFR > 100 Msun/yr. We find that the BCG SFR exceeds 10 Msun/yr in 31 of 90
(34%) cases at 0.25 < z < 1.25, compared to ~1-5% at z ~ 0 from the literature.
At z > 1, this fraction increases to 92(+6)(-31)%, implying a steady decrease
in the BCG SFR over the past ~9 Gyr. At low-z, we find that the specific star
formation rate in BCGs is declining more slowly with time than for field or
cluster galaxies, most likely due to the replenishing fuel from the cooling ICM
in relaxed, cool core clusters. At z > 0.6, the correlation between cluster
central entropy and BCG star formation - which is well established at z ~ 0 -
is not present. Instead, we find that the most star-forming BCGs at high-z are
found in the cores of dynamically unrelaxed clusters. We investigate the
rest-frame near-UV morphology of a subsample of the most star-forming BCGs
using data from the Hubble Space Telescope, finding complex, highly asymmetric
UV morphologies on scales as large as ~50-60 kpc. The high fraction of
star-forming BCGs hosted in unrelaxed, non-cool core clusters at early times
suggests that the dominant mode of fueling star formation in BCGs may have
recently transitioned from galaxy-galaxy interactions to ICM cooling.Comment: 20 pages, 10 figures. Submitted for publication in ApJ. Comments
welcom
Spectral Identification of an Ancient Supernova using Light Echoes in the LMC
We report the successful identification of the type of the supernova
responsible for the supernova remnant SNR 0509-675 in the Large Magellanic
Cloud (LMC) using Gemini spectra of surrounding light echoes. The ability to
classify outbursts associated with centuries-old remnants provides a new window
into several aspects of supernova research and is likely to be successful in
providing new constraints on additional LMC supernovae as well as their
historical counterparts in the Milky Way Galaxy (MWG). The combined spectrum of
echo light from SNR 0509-675 shows broad emission and absorption lines
consistent with a supernova (SN) spectrum. We create a spectral library
consisting of 26 SNe Ia and 6 SN Ib/c that are time-integrated, dust-scattered
by LMC dust, and reddened by the LMC and MWG. We fit these SN templates to the
observed light echo spectrum using minimization as well as correlation
techniques, and we find that overluminous 91T-like SNe Ia with \dm15<0.9
match the observed spectrum best.Comment: 12 pages, 18 Figures, to be published in Ap
Gain-switched all-fiber laser with narrow bandwidth
Gain-switching of a CW fiber laser is a simple and cost-effective approach to generate pulses using an all-fiber system. We report on the construction of a narrow bandwidth (below 0.1 nm) gain-switched fiber laser and optimize the pulse energy and pulse duration under this constraint. The extracted pulse energy is 20 jiJ in a duration of 135 ns at 7 kHz. The bandwidth increases for a higher pump pulse energy and repetition rate, and this sets the limit of the output pulse energy. A single power amplifier is added to raise the peak power to the kW-level and the pulse energy to 230 ßJ while keeping the bandwidth below 0.1 nm. This allows frequency doubling in a periodically poled lithium tantalate crystal with a reasonable conversion efficiency
The Growth of Cool Cores and Evolution of Cooling Properties in a Sample of 83 Galaxy Clusters at 0.3 < z < 1.2 Selected from the SPT-SZ Survey
We present first results on the cooling properties derived from Chandra X-ray
observations of 83 high-redshift (0.3 < z < 1.2) massive galaxy clusters
selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope
data. We measure each cluster's central cooling time, central entropy, and mass
deposition rate, and compare to local cluster samples. We find no significant
evolution from z~0 to z~1 in the distribution of these properties, suggesting
that cooling in cluster cores is stable over long periods of time. We also find
that the average cool core entropy profile in the inner ~100 kpc has not
changed dramatically since z ~ 1, implying that feedback must be providing
nearly constant energy injection to maintain the observed "entropy floor" at
~10 keV cm^2. While the cooling properties appear roughly constant over long
periods of time, we observe strong evolution in the gas density profile, with
the normalized central density (rho_0/rho_crit) increasing by an order of
magnitude from z ~ 1 to z ~ 0. When using metrics defined by the inner surface
brightness profile of clusters, we find an apparent lack of classical, cuspy,
cool-core clusters at z > 0.75, consistent with earlier reports for clusters at
z > 0.5 using similar definitions. Our measurements indicate that cool cores
have been steadily growing over the 8 Gyr spanned by our sample, consistent
with a constant, ~150 Msun/yr cooling flow that is unable to cool below
entropies of 10 keV cm^2 and, instead, accumulates in the cluster center. We
estimate that cool cores began to assemble in these massive systems at z ~ 1,
which represents the first constraints on the onset of cooling in galaxy
cluster cores. We investigate several potential biases which could conspire to
mimic this cool core evolution and are unable to find a bias that has a similar
redshift dependence and a substantial amplitude.Comment: 17 pages with 15 figures, plus appendix. Published in Ap
X-ray Properties of the First SZE-selected Galaxy Cluster Sample from the South Pole Telescope
We present results of X-ray observations of a sample of 15 clusters selected
via their imprint on the cosmic microwave background (CMB) from the thermal
Sunyaev-Zel'dovich (SZ) effect. These clusters are a subset of the first
SZ-selected cluster catalog, obtained from observations of 178 deg^2 of sky
surveyed by the South Pole Telescope. Using X-ray observations with Chandra and
XMM-Newton, we estimate the temperature, T_X, and mass, M_g, of the
intracluster medium (ICM) within r_500 for each cluster. From these, we
calculate Y_X=M_g T_X and estimate the total cluster mass using a M_500-Y_X
scaling relation measured from previous X-ray studies. The integrated
Comptonization, Y_SZ, is derived from the SZ measurements, using additional
information from the X-ray measured gas density profiles and a universal
temperature profile. We calculate scaling relations between the X-ray and SZ
observables, and find results generally consistent with other measurements and
the expectations from simple self-similar behavior. Specifically, we fit a
Y_SZ-Y_X relation and find a normalization of 0.82 +- 0.07, marginally
consistent with the predicted ratio of Y_SZ/Y_X=0.91+-0.01 that would be
expected from the density and temperature models used in this work. Using the
Y_X derived mass estimates, we fit a Y_SZ-M_500 relation and find a slope
consistent with the self-similar expectation of Y_SZ ~ M^5/3 with a
normalization consistent with predictions from other X-ray studies. We compare
the X-ray mass estimates to previously published SZ mass estimates derived from
cosmological simulations of the SPT survey. We find that the SZ mass estimates
are lower by a factor of 0.89+-0.06, which is within the ~15% systematic
uncertainty quoted for the simulation-based SZ masses.Comment: 28 pages, 19 figures, submitted to Ap
The Blanco Cosmology Survey: Data Acquisition, Processing, Calibration, Quality Diagnostics and Data Release
The Blanco Cosmology Survey (BCS) is a 60 night imaging survey of 80
deg of the southern sky located in two fields: (,)= (5 hr,
) and (23 hr, ). The survey was carried out between
2005 and 2008 in bands with the Mosaic2 imager on the Blanco 4m
telescope. The primary aim of the BCS survey is to provide the data required to
optically confirm and measure photometric redshifts for Sunyaev-Zel'dovich
effect selected galaxy clusters from the South Pole Telescope and the Atacama
Cosmology Telescope. We process and calibrate the BCS data, carrying out PSF
corrected model fitting photometry for all detected objects. The median
10 galaxy (point source) depths over the survey in are
approximately 23.3 (23.9), 23.4 (24.0), 23.0 (23.6) and 21.3 (22.1),
respectively. The astrometric accuracy relative to the USNO-B survey is
milli-arcsec. We calibrate our absolute photometry using the stellar
locus in bands, and thus our absolute photometric scale derives from
2MASS which has % accuracy. The scatter of stars about the stellar locus
indicates a systematics floor in the relative stellar photometric scatter in
that is 1.9%, 2.2%, 2.7% and2.7%, respectively.
A simple cut in the AstrOmatic star-galaxy classifier {\tt spread\_model}
produces a star sample with good spatial uniformity. We use the resulting
photometric catalogs to calibrate photometric redshifts for the survey and
demonstrate scatter with an outlier fraction %
to . We highlight some selected science results to date and provide a
full description of the released data products.Comment: 23 pages, 23 figures . Response to referee comments. Paper accepted
for publication. BCS catalogs and images available for download from
http://www.usm.uni-muenchen.de/BC
The Redshift Evolution of the Mean Temperature, Pressure, and Entropy Profiles in 80 SPT-Selected Galaxy Clusters
(Abridged) We present the results of an X-ray analysis of 80 galaxy clusters
selected in the 2500 deg^2 South Pole Telescope survey and observed with the
Chandra X-ray Observatory. We divide the full sample into subsamples of ~20
clusters based on redshift and central density, performing an X-ray fit to all
clusters in a subsample simultaneously, assuming self-similarity of the
temperature profile. This approach allows us to constrain the shape of the
temperature profile over 0<r<1.5R500, which would be impossible on a
per-cluster basis, since the observations of individual clusters have, on
average, 2000 X-ray counts. The results presented here represent the first
constraints on the evolution of the average temperature profile from z=0 to
z=1.2. We find that high-z (0.6<z<1.2) clusters are slightly (~40%) cooler both
in the inner (rR500) regions than their low-z
(0.3<z<0.6) counterparts. Combining the average temperature profile with
measured gas density profiles from our earlier work, we infer the average
pressure and entropy profiles for each subsample. Overall, our observed
pressure profiles agree well with earlier lower-redshift measurements,
suggesting minimal redshift evolution in the pressure profile outside of the
core. We find no measurable redshift evolution in the entropy profile at
rR500 in
our high-z subsample. This flattening is consistent with a temperature bias due
to the enhanced (~3x) rate at which group-mass (~2 keV) halos, which would go
undetected at our survey depth, are accreting onto the cluster at z~1. This
work demonstrates a powerful method for inferring spatially-resolved cluster
properties in the case where individual cluster signal-to-noise is low, but the
number of observed clusters is high.Comment: 17 pages, 13 figures, submitted to ApJ. Updated following referee
repor
- …
