12,975 research outputs found

    Active adjustment of the cervical spine during pitch production compensates for shape: The ArtiVarK study

    Get PDF
    The anterior lordosis of the cervical spine is thought to contribute to pitch (fo) production by influencing cricoid rotation as a function of larynx height. This study examines the matter of inter-individual variation in cervical spine shape and whether this has an influence on how fo is produced along increasing or decreasing scales, using the ArtiVarK dataset, which contains real-time MRI pitch production data. We find that the cervical spine actively participates in fo production, but the amount of displacement depends on individual shape. In general, anterior spine motion (tending toward cervical lordosis) occurs for low fo, while posterior movement (tending towards cervical kyphosis) occurs for high fo

    A logarithmic generalization of tensor product theory for modules for a vertex operator algebra

    Full text link
    We describe a logarithmic tensor product theory for certain module categories for a ``conformal vertex algebra.'' In this theory, which is a natural, although intricate, generalization of earlier work of Huang and Lepowsky, we do not require the module categories to be semisimple, and we accommodate modules with generalized weight spaces. The corresponding intertwining operators contain logarithms of the variables.Comment: 39 pages. Misprints corrected. Final versio

    ELEMENTS OF CATTLE FEEDING PROFITABILITY IN MIDWEST FEEDLOTS

    Get PDF
    Conventional wisdom and earlier research have concluded that cattle feeding profitability is more determined by feeder and fed cattle prices than by animal performance. This study examined cross-sectional and time-series data from over 1600 pens of cattle in more than 220 feedlots in the upper Midwest where weather and lot conditions are thought to influence feedlot profitability. In addition to input and output prices and animal performance, other factors found to significantly impact cattle feeding profitability were sex, placement weight, facility design, and to a lesser extent placement season.cattle feedlots, probability, risk, Livestock Production/Industries,

    Artifact of the phonon-induced localization by variational calculations in the spin-boson model

    Full text link
    We present energy and free energy analyses on all variational schemes used in the spin-boson model at both T=0 and T0T\neq0. It is found that all the variational schemes have fail points, at where the variational schemes fail to provide a lower energy (or a lower free energy at T0T\neq0) than the displaced-oscillator ground state and therefore the variational ground state becomes unstable, which results in a transition from a variational ground state to a displaced oscillator ground state when the fail point is reached. Such transitions are always misidentied as crossover from a delocalized to localized phases in variational calculations, leading to an artifact of phonon-induced localization. Physics origin of the fail points and explanations for different transition behaviors with different spectral functions are found by studying the fail points of the variational schemes in the single mode case.Comment: 9 pages, 7 figure

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3626.90311±0.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=163822.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6

    Nonaxisymmetric Evolution of Magnetically Subcritical Clouds: Bar Growth, Core Elongation, and Binary Formation

    Get PDF
    We have begun a systematic numerical study of the nonlinear growth of nonaxisymmetric perturbations during the ambipolar diffusion-driven evolution of initially magnetically subcritical molecular clouds, with an eye on the formation of binaries, multiple stellar systems and small clusters. In this initial study, we focus on the m=2m=2 (or bar) mode, which is shown to be unstable during the dynamic collapse phase of cloud evolution after the central region has become magnetically supercritical. We find that, despite the presence of a strong magnetic field, the bar can grow fast enough that for a modest initial perturbation (at 5% level) a large aspect ratio is obtained during the isothermal phase of cloud collapse. The highly elongated bar is expected to fragment into small pieces during the subsequent adiabatic phase. Our calculations suggest that the strong magnetic fields observed in some star-forming clouds and envisioned in the standard picture of single star formation do not necessarily suppress bar growth and fragmentation; on the contrary, they may actually promote these processes, by allowing the clouds to have more than one (thermal) Jeans mass to begin with without collapsing promptly. Nonlinear growth of the bar mode in a direction perpendicular to the magnetic field, coupled with flattening along field lines, leads to the formation of supercritical cores that are triaxial in general. It removes a longstanding objection to the standard scenario of isolated star formation involving subcritical magnetic field and ambipolar diffusion based on the likely prolate shape inferred for dense cores. Continuted growth of the bar mode in already elongated starless cores, such as L1544, may lead to future binary and multiple star formation.Comment: 5 pages, 2 figures, accepted by ApJ

    Angular-dependent oscillations of the magnetoresistance in Bi_2Se_3 due to the three-dimensional bulk Fermi surface

    Full text link
    We observed pronounced angular-dependent magnetoresistance (MR) oscillations in a high-quality Bi2Se3 single crystal with the carrier density of 5x10^18 cm^-3, which is a topological insulator with residual bulk carriers. We show that the observed angular-dependent oscillations can be well simulated by using the parameters obtained from the Shubnikov-de Haas oscillations, which clarifies that the oscillations are solely due to the bulk Fermi surface. By completely elucidating the bulk oscillations, this result paves the way for distinguishing the two-dimensional surface state in angular-dependent MR studies in Bi2Se3 with much lower carrier density. Besides, the present result provides a compelling demonstration of how the Landau quantization of an anisotropic three-dimensional Fermi surface can give rise to pronounced angular-dependent MR oscillations.Comment: 5 pages, 5 figure
    corecore