67 research outputs found

    Real-time Enhancement, Registration, and Fusion for a Multi-Sensor Enhanced Vision System

    Get PDF
    Over the last few years NASA Langley Research Center (LaRC) has been developing an Enhanced Vision System (EVS) to aid pilots while flying in poor visibility conditions. The EVS captures imagery using two infrared video cameras. The cameras are placed in an enclosure that is mounted and flown forward-looking underneath the NASA LaRC ARIES 757 aircraft. The data streams from the cameras are processed in real-time and displayed on monitors on-board the aircraft. With proper processing the camera system can provide better-than- human-observed imagery particularly during poor visibility conditions. However, to obtain this goal requires several different stages of processing including enhancement, registration, and fusion, and specialized processing hardware for real-time performance. We are using a real-time implementation of the Retinex algorithm for image enhancement, affine transformations for registration, and weighted sums to perform fusion. All of the algorithms are executed on a single TI DM642 digital signal processor (DSP) clocked at 720 MHz. The image processing components were added to the EVS system, tested, and demonstrated during flight tests in August and September of 2005. In this paper we briefly discuss the EVS image processing hardware and algorithms. We then discuss implementation issues and show examples of the results obtained during flight tests. Keywords: enhanced vision system, image enhancement, retinex, digital signal processing, sensor fusio

    A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    Get PDF
    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters

    Automated, on-board terrain analysis for precision landings

    Get PDF
    Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Detecting Changes in Terrain Using Unmanned Aerial Vehicles

    No full text
    In recent years, small unmanned aerial vehicles (UAVs) have been used for more than the thrill they bring to model airplane enthusiasts. Their flexibility and low cost have made them a viable option for low-altitude reconnaissance. In a recent effort, we acquired video data from a small UAV during several passes over the same flight path. The objective of the exercise was to determine if objects had been added to the terrain along the flight path between flight passes. Several issues accrue to this simple-sounding problem: (1) lighting variations may cause false detection of objects because of changes in shadow orientation and strength between passes; (2) variations in the flight path due to wind-speed, and heading change may cause misalignment of gross features making the task of detecting changes between the frames very difficult; and (3) changes in the aircraft orientation and altitude lead to a change in size of the features from frame-to-frame making a comparison difficult. In this paper, we discuss our efforts to perform this change detection, and the lessons that we learned from this exercise

    Drug Rash With Eosinophilia and Systemic Symptoms (DRESS) Caused by Phenytoin

    No full text
    Drug rash with eosinophilia and systemic symptoms (DRESS) is a rare but potentially life-threatening condition with high mortality. Diagnosis is challenging due to variable clinical presentation and a protracted latency period following initiation of the offending drug. DRESS is a complex interplay that starts by introduction of the offending drug, reactivation of viruses and activation of the immune system. Herpes virus reactivation is considered a diagnostic marker and indicator of illness severity. Prompt recognition and the removal of offending agent remain the key to successful treatment. In cases of severe organ involvement, corticosteroids, immunoglobulins, antiviral and specialist consultation may be helpful. Here we present a case of a 36-year-old African-American male who presented with symptoms mimicking sepsis with an associated skin eruption that was diagnosed as DRESS

    Brain Epileptic Seizure Detection Using Joint CNN and Exhaustive Feature Selection With RNN-BLSTM Classifier

    No full text
    Brain Epilepsy seizure is a critical disorder, which is an uncontrolled burst of electrical activity of brain. The early detection of brain seizure can save the life of humans. The electroencephalogram (EEG) signals may be used to automatically identify brain seizures, which is one of the most prominent solutions for this issue. However, the conventional methods are failed to classify the brain seizure effectively. So, this work implemented the Brain Epilepsy Seizure-Detection-Network (BESD-Net) using deep learning, recurrent learning properties. Initially, the dataset pre-processing is performed, which eliminates the noise, unwanted data from EEG dataset. Then, the deep learning based customized convolution neural network (CCNN) is trained on the pre-processed EEG data for precise extraction of disease correlated features. The machine learning based exhaustive random forest (ERF) feature selection is used to optimize the features obtained from the CCNN, which are highly correlated with disease dependent properties. In conclusion, the recurrent neural network (RNN) based bi-directional long short-term memory (BLSTM) is used in order to detect brain seizures from the chosen ERF features. Training and testing of suggested methodology had made use of CHB-MIT Scalp EEG Database. The aforementioned model has achieved the values of 98.36&#x0025;, 97.54&#x0025;, 97.91&#x0025;, 98&#x0025; and 95.08&#x0025; respectively for precision, sensitivity, F1-Score, accuracy and specificity. The findings of the simulations demonstrate that the suggested BESD-Net led to superior performance when compared to the technologies that are already in use
    corecore