81 research outputs found
Stealth Proteins: In Silico Identification of a Novel Protein Family Rendering Bacterial Pathogens Invisible to Host Immune Defense
There are a variety of bacterial defense strategies to survive in a hostile environment. Generation of extracellular polysaccharides has proved to be a simple but effective strategy against the host's innate immune system. A comparative genomics approach led us to identify a new protein family termed Stealth, most likely involved in the synthesis of extracellular polysaccharides. This protein family is characterized by a series of domains conserved across phylogeny from bacteria to eukaryotes. In bacteria, Stealth (previously characterized as SacB, XcbA, or WefC) is encoded by subsets of strains mainly colonizing multicellular organisms, with evidence for a protective effect against the host innate immune defense. More specifically, integrating all the available information about Stealth proteins in bacteria, we propose that Stealth is a D-hexose-1-phosphoryl transferase involved in the synthesis of polysaccharides. In the animal kingdom, Stealth is strongly conserved across evolution from social amoebas to simple and complex multicellular organisms, such as Dictyostelium discoideum, hydra, and human. Based on the occurrence of Stealth in most Eukaryotes and a subset of Prokaryotes together with its potential role in extracellular polysaccharide synthesis, we propose that metazoan Stealth functions to regulate the innate immune system. Moreover, there is good reason to speculate that the acquisition and spread of Stealth could be responsible for future epidemic outbreaks of infectious diseases caused by a large variety of eubacterial pathogens. Our in silico identification of a homologous protein in the human host will help to elucidate the causes of Stealth-dependent virulence. At a more basic level, the characterization of the molecular and cellular function of Stealth proteins may shed light on fundamental mechanisms of innate immune defense against microbial invasion
The Numb/p53 circuitry couples replicative self-renewal and tumor suppression in mammary epithelial cells
The cell fate determinant Numb orchestrates tissue morphogenesis and patterning in developmental systems. In the human mammary gland, Numb is a tumor suppressor and regulates p53 levels. However, whether this function is linked to its role in fate determination remains unclear. Here, by exploiting an ex vivo system, we show that at mitosis of purified mammary stem cells (SCs), Numb ensures the asymmetric outcome of self-renewing divisions by partitioning into the progeny that retains the SC identity, where it sustains high p53 activity. Numb also controls progenitor maturation. At this level, Numb loss associates with the epithelial-to-mesenchymal transition and results in differentiation defects and reacquisition of stemness features. The mammary gland of Numb-knockout mice displays an expansion of the SC compartment, associated with morphological alterations and tumorigenicity in orthotopic transplants. This is because of low p53 levels and can be inhibited by restoration of Numb levels or p53 activity, which results in successful SC-targeted treatment
Topology analysis and visualization of Potyvirus protein-protein interaction network
Background: One of the central interests of Virology is the identification of host factors that contribute to virus infection. Despite tremendous efforts, the list of factors identified remains limited. With omics techniques, the focus has changed from identifying and thoroughly characterizing individual host factors to the simultaneous analysis of thousands of interactions, framing them on the context of protein-protein interaction networks and of transcriptional regulatory networks. This new perspective is allowing the identification of direct and indirect viral targets. Such information is available for several members of the Potyviridae family, one of the largest and more important families of plant viruses.
Results: After collecting information on virus protein-protein interactions from different potyviruses, we have processed it and used it for inferring a protein-protein interaction network. All proteins are connected into a single network component. Some proteins show a high degree and are highly connected while others are much less connected, with the network showing a significant degree of dissortativeness. We have attempted to integrate this virus protein-protein interaction network into the largest protein-protein interaction network of Arabidopsis thaliana, a susceptible laboratory host. To make the interpretation of data and results easier, we have developed a new approach for visualizing and analyzing the dynamic spread on the host network of the local perturbations induced by viral proteins. We found that local perturbations can reach the entire host protein-protein interaction network, although the efficiency of this spread depends on the particular viral proteins.
By comparing the spread dynamics among viral proteins, we found that some proteins spread their effects fast and efficiently by attacking hubs in the host network while other proteins exert more local effects.
Conclusions: Our findings confirm that potyvirus protein-protein interaction networks are highly connected, with some proteins playing the role of hubs. Several topological parameters depend linearly on the protein degree. Some viral proteins focus their effect in only host hubs while others diversify its effect among several proteins at the first step. Future new data will help to refine our model and to improve our predictions.This work was supported by the Spanish Ministerio de Economia y Competitividad grants BFU2012-30805 (to SFE), DPI2011-28112-C04-02 (to AF) and DPI2011-28112-C04-01 (to JP). The first two authors are recipients of fellowships from the Spanish Ministerio de Economia y Competitividad: BES-2012-053772 (to GB) and BES-2012-057812 (to AF-F).Bosque, G.; Folch Fortuny, A.; Picó Marco, JA.; Ferrer, A.; Elena Fito, SF. (2014). Topology analysis and visualization of Potyvirus protein-protein interaction network. BMC Systems Biology. 129(8):1-15. doi:10.1186/s12918-014-0129-8S1151298Gibbs A, Ohshima K: Potyviruses and the digital revolution. Annu Rev Phytopathol. 2010, 48: 205-223. 10.1146/annurev-phyto-073009-114404.Spence NJ, Phiri NA, Hughes SL, Mwaniki A, Simons S, Oduor G, Chacha D, Kuria A, Ndirangu S, Kibata GN, Marris GC: Economic impact of turnip mosaic virus, cauliflower mosaic virus and beet mosaic virus in three Kenyan vegetables. Plant Pathol. 2007, 56: 317-323. 10.1111/j.1365-3059.2006.01498.x.Ward CW, Shukla DD: Taxonomy of potyviruses: current problems and some solutions. Intervirology. 1991, 32: 269-296.Riechmann JL, Laín S, García JA: Highlights and prospects of potyvirus molecular biology. J Gen Virol. 1992, 73 (Pt 1): 1-16. 10.1099/0022-1317-73-1-1.Elena SF, Rodrigo G: Towards an integrated molecular model of plant-virus interactions. Curr Opin Virol. 2012, 2: 719-724. 10.1016/j.coviro.2012.09.004.Wei T, Zhang C, Hong J, Xiong R, Kasschau KD, Zhou X, Carrington JC, Wang A: Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog. 2010, 6: e1000962-10.1371/journal.ppat.1000962.Chung BY-W, Miller WA, Atkins JF, Firth AE: An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci. 2008, 105: 5897-5902. 10.1073/pnas.0800468105.Allison R, Johnston RE, Dougherty WG: The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology. 1986, 154: 9-20. 10.1016/0042-6822(86)90425-3.Domier LL, Franklin KM, Shahabuddin M, Hellmann GM, Overmeyer JH, Hiremath ST, Siaw MF, Lomonossoff GP, Shaw JG, Rhoads RE: The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Res. 1986, 14: 5417-5430. 10.1093/nar/14.13.5417.Revers F, Le Gall O, Candresse T, Maule AJ: New advances in understanding the molecular biology of plant/potyvirus interactions. Mol Plant Microbe Interact. 1999, 12: 367-376. 10.1094/MPMI.1999.12.5.367.Urcuqui-Inchima S, Haenni AL, Bernardi F: Potyvirus proteins: a wealth of functions. Virus Res. 2001, 74: 157-175. 10.1016/S0168-1702(01)00220-9.Merits A, Rajamäki M-L, Lindholm P, Runeberg-Roos P, Kekarainen T, Puustinen P, Mäkeläinen K, Valkonen JPT, Saarma M: Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J Gen Virol. 2002, 83: 1211-1221.Adams MJ, Antoniw JF, Beaudoin F: Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol. 2005, 6: 471-487. 10.1111/j.1364-3703.2005.00296.x.Zheng H, Yan F, Lu Y, Sun L, Lin L, Cai L, Hou M, Chen J: Mapping the self-interacting domains of TuMV HC-Pro and the subcellular localization of the protein. Virus Genes. 2011, 42: 110-116. 10.1007/s11262-010-0538-8.Culver JN, Padmanabhan MS: Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol. 2007, 45: 221-243. 10.1146/annurev.phyto.45.062806.094422.De Las Rivas J, Fontanillo C: Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol. 2010, 6: e1000807-10.1371/journal.pcbi.1000807.Bornke F: Protein Interaction Networks. Anal Biol Netw. Edited by: Junker BH, Schreiber F. 2008, John Wiley & Sons, Inc, Hoboken, NJ, USA, 207-232. 10.1002/9780470253489.ch9.Phizicky EM, Fields S: Protein-protein interactions: methods for detection and analysis. Microbiol Rev. 1995, 59: 94-123.Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U: Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci. 2009, 10: 2763-2788. 10.3390/ijms10062763.Fields S, Song O: A novel genetic system to detect protein-protein interactions. Nature. 1989, 340: 245-246. 10.1038/340245a0.Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S-L, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, et al: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002, 415: 180-183. 10.1038/415180a.Hu C-D, Chinenov Y, Kerppola TK: Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002, 9: 789-798. 10.1016/S1097-2765(02)00496-3.Kodama Y, Hu C-D: An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques. 2010, 49: 793-805. 10.2144/000113519.Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, et al: Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005, 437: 1173-1178. 10.1038/nature04209.Venkatesan K, Rual J-F, Vazquez A, Stelzl U, Lemmens I, Hirozane-Kishikawa T, Hao T, Zenkner M, Xin X, Goh K-I, Yildirim MA, Simonis N, Heinzmann K, Gebreab F, Sahalie JM, Cevik S, Simon C, de Smet A-S, Dann E, Smolyar A, Vinayagam A, Yu H, Szeto D, Borick H, Dricot A, Klitgord N, Murray RR, Lin C, Lalowski M, Timm J, et al: An empirical framework for binary interactome mapping. Nat Methods. 2008, 6: 83-90. 10.1038/nmeth.1280.Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000, 403: 623-627. 10.1038/35001009.Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci. 2001, 98: 4569-4574. 10.1073/pnas.061034498.Uetz P, Dong Y-A, Zeretzke C, Atzler C, Baiker A, Berger B, Rajagopala SV, Roupelieva M, Rose D, Fossum E, Haas J: Herpesviral protein networks and their interaction with the human proteome. Science. 2006, 311: 239-242. 10.1126/science.1116804.Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, Schmidt T, Kraus T, Stellberger T, Rutenberg C, Suthram S, Bandyopadhyay S, Rose D, von Brunn A, Uhlmann M, Zeretzke C, Dong Y-A, Boulet H, Koegl M, Bailer SM, Koszinowski U, Ideker T, Uetz P, Zimmer R, Haas J: Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009, 5: e1000570-10.1371/journal.ppat.1000570.Rodrigo G, Carrera J, Ruiz-Ferrer V, del Toro FJ, Llave C, Voinnet O, Elena SF: A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS One. 2012, 7: e40526-10.1371/journal.pone.0040526.Newman MEJ: The structure and function of complex networks. SIAM Rev. 2003, 45: 167-256. 10.1137/S003614450342480.Watts DJ, Strogatz SH: Collective dynamics of "small-world" networks. Nature. 1998, 393: 440-442. 10.1038/30918.Albert R, Barabási A-L: Statistical mechanics of complex networks. Rev Mod Phys. 2002, 74: 47-97. 10.1103/RevModPhys.74.47.Boccaletti S, Latora V, Moreno Y, Chávez M, Hwang D: Complex networks: structure and dynamics. Phys Rep. 2006, 424: 175-308. 10.1016/j.physrep.2005.10.009.Barabási A-L, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004, 5: 101-113. 10.1038/nrg1272.Albert R, DasGupta B, Hegde R, Sivanathan GS, Gitter A, Gürsoy G, Paul P, Sontag E: Computationally efficient measure of topological redundancy of biological and social networks. Phys Rev E. 2011, 84: 036117-10.1103/PhysRevE.84.036117.Cho D-Y, Kim Y-A, Przytycka TM: Chapter 5: network biology approach to complex diseases. PLoS Comput Biol. 2012, 8: e1002820-10.1371/journal.pcbi.1002820.Russell RB, Aloy P: Targeting and tinkering with interaction networks. Nat Chem Biol. 2008, 4: 666-673. 10.1038/nchembio.119.Winterbach W, Mieghem PV, Reinders M, Wang H, de Ridder D: Topology of molecular interaction networks. BMC Syst Biol. 2013, 7: 90-10.1186/1752-0509-7-90.Pržulj N: Protein-protein interactions: making sense of networks via graph-theoretic modeling. Bioessays. 2011, 33: 115-123. 10.1002/bies.201000044.Yook S-H, Oltvai ZN, Barabási A-L: Functional and topological characterization of protein interaction networks. Proteomics. 2004, 4: 928-942. 10.1002/pmic.200300636.Pržulj N, Wigle DA, Jurisica I: Functional topology in a network of protein interactions. Bioinformatics. 2004, 20: 340-348. 10.1093/bioinformatics/btg415.Elena SF, Carrera J, Rodrigo G: A systems biology approach to the evolution of plant-virus interactions. Curr Opin Plant Biol. 2011, 14: 372-377. 10.1016/j.pbi.2011.03.013.Zilian E, Maiss E: Detection of plum pox potyviral protein-protein interactions in planta using an optimized mRFP-based bimolecular fluorescence complementation system. J Gen Virol. 2011, 92: 2711-2723. 10.1099/vir.0.033811-0.Lin L, Shi Y, Luo Z, Lu Y, Zheng H, Yan F, Chen J, Chen J, Adams MJ, Wu Y: Protein-protein interactions in two potyviruses using the yeast two-hybrid system. Virus Res. 2009, 142: 36-40. 10.1016/j.virusres.2009.01.006.Guo D, Rajamäki M-L, Saarma M, Valkonen JPT: Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. J Gen Virol. 2001, 82: 935-939.Shen WT, Wang MQ, Yan P, Gao L, Zhou P: Protein interaction matrix of papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virol. 2010, 54: 49-54. 10.4149/av_2010_01_49.Kang S, Ws L, Kh K: A protein interaction map of soybean mosaic virus strain G7H based on the yeast two-hybrid system. Mol Cells. 2004, 18: 122-126.Yambao MLM, Masuta C, Nakahara K, Uyeda I: The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg-HCPro and VPg-VPg interactions. J Gen Virol. 2003, 84: 2861-2869. 10.1099/vir.0.19312-0.Evidence for network evolution in an Arabidopsis interactome map. Science. 2011, 333: 601-607. 10.1126/science.1203877.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13: 2498-2504. 10.1101/gr.1239303.Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M: An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw Off J Int Neural Netw Soc. 2012, 31: 53-72. 10.1016/j.neunet.2012.03.001.Bass JIF, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJM: Using networks to measure similarity between genes: association index selection. Nat Methods. 2013, 10: 1169-1176. 10.1038/nmeth.2728.Newman MEJ: Assortative mixing in networks. Phys Rev Lett. 2002, 89: 208701-10.1103/PhysRevLett.89.208701
XFEM coupling of granular flows interacting with surrounding fluids
In this paper, ideas for the simulation of sliding dry granular materials interacting with surrounding fluids are presented and first results are presented. The compressible granular material is modeled as a medium which can show solid-like and fluid-like characteristics. Therefore a weighted decomposition of stress tensors of a solid-like and a fluid-like phase is applied. The surrounding incompressible fluids are described with a Newtonian constitutive model. Interface dynamics are handled with the level-set method. The model equations are discretized with the space-time finite element method. Discontinuous solution characteristics across interfaces are captured numerically by the extended finite element method (XFEM). For all discontinuities the space of ansatz functions is enriched with Heaviside functions
Projection-based reduction of fluid-structure interaction systems using monolithic space-time modes
The focus of this work is the development of reduced models for engineering applications in complex bidirectional fluid-structure interaction. In the simultaneous solution procedure, velocity variables are used for both fluid and solid, and the whole set of model equations is discretized by a stabilized time-discontinuous space-time finite element method. Flexible structures are modeled using a three-dimensional continuum approach in a total Lagrangian setting considering large displacements and rotations. In the flow domain the incompressible Navier-Stokes equations describe the Newtonian fluid. A continuous finite element mesh is applied to the entire spatial domain, and the discretized model equations are assembled in a single set of algebraic equations, considering the two-field problem as a whole. The continuous fluid-structure mesh with identical orders of approximation for both solid and fluid in space and time automatically yields conservation of mass, momentum and energy at the fluid-structure interface. A mesh-moving scheme is used to adapt the nodal coordinates of the fluid space-time finite element mesh to the structural deformation. The computational approach for strongly coupled fluid-structure interaction is used to create suitable reduced models of generic nonlinear problems. Reduction is performed with monolithic projection-based space-time modes, ensuring strong coupling of fluid and structure in the reduced model. The contribution discusses results using proper orthogonal decomposition (POD) for determination of monolithic space-time modes in the reduction of fluid-structure systems. © 2009 Elsevier B.V. All rights reserved
Extended space-time finite elements for landslide dynamics
The paper introduces a methodology for numerical simulation of landslides experiencing considerable deformations and topological changes. Within an interface capturing approach, all interfaces are implicitly described by specifically defined level-set functions allowing arbitrarily evolving complex topologies. The transient interface evolution is obtained by solving the level-set equation driven by the physical velocity field for all three level-set functions in a block Jacobi approach. The three boundary-coupled fluid-like continua involved are modeled as incompressible, governed by a generalized non-Newtonian material law taking into account capillary pressure at moving fluid-fluid interfaces. The weighted residual formulation of the level-set equations and the fluid equations is discretized with finite elements in space and time using velocity and pressure as unknown variables. Non-smooth solution characteristics are represented by enriched approximations to fluid velocity (weak discontinuity) and fluid pressure (strong discontinuity). Special attention is given to the construction of enriched approximations for elements containing evolving triple junctions. Numerical examples of three-fluid tank sloshing and air-water-liquefied soil landslides demonstrate the potential and applicability of the method in geotechnical investigations. © 2012 John Wiley & Sons, Ltd
Finite element method for strongly-coupled systems of fluid-structure interaction with application to granular flow in silos
A monolithic approach to fluid-structure interactions based on the space-time finite element method (STFEM) is presented. The method is applied to the investigation of stress states in silos filled with granular material during discharge. The thin-walled siloshell is modeled in a continuum approach as elastic solid material, whereas the flowing granular material is described by an enhanced viscoplastic non-Newtonian fluid model. The weak forms of the governing equations are discretized by STFEM for both solid and fluid domain. To adapt the matching mesh nodes of the fluid domain to the structural deformations, a mesh-moving scheme using a neo-Hookean pseudo-solid is applied. The finite element approximation of non-smooth solution characteristics is enhanced by the extended finite element method (XFEM). The proposed methodology is applied to the 4D (space-time) investigation of deformation-dependent loading conditions during silo discharge
Weiterentwicklung eines mechanischen Modells zur Beschreibung Regen-Wind induzierter Schwingungen: Zwischenbericht März 2007
Der vorliegende Bericht gibt einen Überblick über den derzeitigen Stand des vom Graduiertenkolleg "Wechselwirkung von Struktur und Fluid" der TU Braunschweig geförderten Forschungsvorhabens zum Thema "Regen-Wind induzierte Seilschwingungen"
Zur Situation der sozialwissenschaftlichen Forschung in Österreich. Endbericht. Teil IV. Band 2: Der Produktions- und Verwertungszusammenhang sozialwissenschaftlicher Forschung.
- …
