694 research outputs found
Intraindividual reaction time variability predicts prospective memory failures in older adults
This study investigated the relationship between intraindividual variability (IIV) in reaction time and prospective memory errors in older adults using data from the Zurich Longitudinal Study of Cognitive Aging (n = 336 individuals aged 66–81 years). The results indicated that increased IIV measured from independent tasks was associated with a greater proportion of prospective memory errors. These significant findings were not influenced by age and did not vary according to prospective memory cue type. Variability is thought to reflect fluctuations in attentional and executive control and these attentional processes may also impact on prospective memory through failure to detect the target cue. The findings suggest, therefore, that measures of variability may have some potential in the identification of older persons who are more vulnerable to everyday errors such as prospective memory failures
Rare Variants in PLXNA4 and Parkinson's Disease.
Approximately 20% of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance
Five views of a secret: does cognition change during middle adulthood?
This study examined five aspects of change (or
stability) in cognitive abilities in middle adulthood across a
12-year period. Data come from the Interdisciplinary Study
on Adult Development. The sample consisted of N = 346
adults (43.8 years on average, 48.6% female). In total, 11
cognitive tests were administered to assess fluid and crystallized
intelligence, memory, and processing speed. In a
first series of analyses, strong measurement invariance was
established. Subsequently, structural stability, differential
stability, stability of divergence, absolute stability, and the
generality of changes were examined. Factor covariances
were shown to be equal across time, implying structural
stability. Stability coefficients were around .90 for fluid and
crystallized intelligence, and speed, indicating high, yet not
perfect differential stability. The coefficient for memory
was .58. Only in processing speed the variance increased
across time, indicating heterogeneity in interindividual
development. Significant mean-level changes emerged,
with an increase in crystallized intelligence and decline in
the other three abilities. A number of correlations among
changes in cognitive abilities were significant, implying
that cognitive change
Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration
Mutations in the vacuolar protein sorting 35 homolog (VPS35) gene at the PARK17 locus, encoding a key component of the retromer complex, were recently identified as a new cause of late-onset, autosomal dominant Parkinson's disease (PD). Here we explore the pathogenic consequences of PD-associated mutations in VPS35 using a number of model systems. VPS35 exhibits a broad neuronal distribution throughout the rodent brain, including within the nigrostriatal dopaminergic pathway. In the human brain, VPS35 protein levels and distribution are similar in tissues from control and PD subjects, and VPS35 is not associated with Lewy body pathology. The common D620N missense mutation in VPS35 does not compromise its protein stability or localization to endosomal and lysosomal vesicles, or the vesicular sorting of the retromer cargo, sortilin, SorLA and cation-independent mannose 6-phosphate receptor, in rodent primary neurons or patient-derived human fibroblasts. In yeast we show that PD-linked VPS35 mutations are functional and can normally complement VPS35 null phenotypes suggesting that they do not result in a loss-of-function. In rat primary cortical cultures the overexpression of human VPS35 induces neuronal cell death and increases neuronal vulnerability to PD-relevant cellular stress. In a novel viral-mediated gene transfer rat model, the expression of D620N VPS35 induces the marked degeneration of substantia nigra dopaminergic neurons and axonal pathology, a cardinal pathological hallmark of PD. Collectively, these studies establish that dominant VPS35 mutations lead to neurodegeneration in PD consistent with a gain-of-function mechanism, and support a key role for VPS35 in the development of PD
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures
Recommended from our members
The LRRK2 signalling system
The LRRK2 gene is a major contributor to genetic risk for Parkinson's disease and understanding the biology of the leucine-rich repeat kinase 2 (LRRK2, the protein product of this gene) is an important goal in Parkinson's research. LRRK2 is a multi-domain, multi-activity enzyme and has been implicated in a wide range of signalling events within the cell. Because of the complexities of the signal transduction pathways in which LRRK2 is involved, it has been challenging to generate a clear idea as to how mutations and disease associated variants in this gene are altered in disease. Understanding the events in which LRRK2 is involved at a systems level is therefore critical to fully understand the biology and pathobiology of this protein and is the subject of this review
Phos-tag analysis of Rab10 phosphorylation by LRRK2:a powerful assay for assessing kinase function and inhibitors
Autosomal dominant mutations that activate the leucine-rich repeat kinase-2 (LRRK2) cause inherited Parkinson's disease. Recent work has revealed that LRRK2 directly phosphorylates a conserved Thr/Ser residue in the effector-binding switch-II motif of a number of Rab GTPase proteins, including Rab10. Here we describe a facile and robust method to assess phosphorylation of endogenous Rab10 in mouse embryonic fibroblasts (MEFs), lung and spleen derived B Cells, based on the ability of the Phos-tag reagent to retard the electrophoretic mobility of LRRK2 phosphorylated Rab10. We exploit this assay to show that phosphorylation of Rab10 is ablated in kinase inactive LRRK2[D2017A] knock-in MEFs and mouse lung, demonstrating that LRRK2 is the major Rab10 kinase in these cells/tissue. We also establish that the Phos-tag assay can be deployed to monitor the impact that activating LRRK2 pathogenic (G2019S and R1441G) knock-in mutations have on stimulating Rab10 phosphorylation. We show that upon addition of LRRK2 inhibitors, Rab10 is dephosphorylated within 1-2 min, markedly more rapidly than the Ser935 and Ser1292 biomarker sites that require 40-80 min. Furthermore, we find that phosphorylation of Rab10 is suppressed in LRRK2[S910A, S935A] knock-in MEFs indicating that phosphorylation of Ser910 and Ser935 and potentially 14-3-3 binding play a role in facilitating the phosphorylation of Rab10 by LRRK2 in vivo. The Rab Phos-tag assay has the potential to significantly aide with evaluating the effect that inhibitors, mutations and other factors have on the LRRK2 signalling pathway
Recommended from our members
LRRK2 at the interface of autophagosomes, endosomes and lysosomes
Over the past 20 years, substantial progress has been made in identifying the underlying genetics of Parkinson’s disease (PD). Of the known genes, LRRK2 is a major genetic contributor to PD. However, the exact function of LRRK2 remains to be elucidated. In this review, we discuss how familial forms of PD have led us to hypothesize that alterations in endomembrane trafficking play a role in the pathobiology of PD. We will discuss the major observations that have been made to elucidate the role of LRRK2 in particular, including LRRK2 animal models and high-throughput proteomics approaches. Taken together, these studies strongly support a role of LRRK2 in vesicular dynamics. We also propose that targeting these pathways may not only be beneficial for developing therapeutics for LRRK2-driven PD, but also for other familial and sporadic cases
Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations
Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common genetic cause of Parkinson’s disease. LRRK2 is a multifunctional protein affecting many cellular processes and has been described to bind microtubules. Defective microtubule-based axonal transport is hypothesized to contribute to Parkinson’s disease, but whether LRRK2 mutations affect this process to mediate pathogenesis is not known. Here we find that LRRK2 containing pathogenic Roc-COR domain mutations (R1441C, Y1699C) preferentially associates with deacetylated microtubules, and inhibits axonal transport in primary neurons and in Drosophila, causing locomotor deficits in vivo. In vitro, increasing microtubule acetylation using deacetylase inhibitors or the tubulin acetylase αTAT1 prevents association of mutant LRRK2 with microtubules, and the deacetylase inhibitor trichostatin A (TSA) restores axonal transport. In vivo knockdown of the deacetylases HDAC6 and Sirt2, or administration of TSA rescues both axonal transport and locomotor behavior. Thus, this study reveals a pathogenic mechanism and a potential intervention for Parkinson’s disease
Evaluation of presumably disease causing SCN1A variants in a cohort of common epilepsy syndromes
Objective: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods: We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation: We identified 8 known missense mutations, previously reported as path
- …
