3,427 research outputs found

    Coloumb interaction and instability of CE-structure in half doped manganites

    Get PDF
    In their Letter (Phys. Rev. Lett. 83, 5118 (1999)), den Brink, Khaliullin, and Khomskii proposed theoretically that the one-dimensional ferromagnetic zigzag chains in CE phase in half-doped manganites play an essential role in forming the orbital ordering, and, more surprisingly, the on-site Coulomb interaction U between electrons with different orbitals leads to experimentally observed charge ordering. In this Comment, I point out that the strong U will destroy the stability of CE-type phase, which is stable in a very narrow regime in the parameter space for electronic model.To solve this issue finally, we have to take into account other interactions, such as the long-range Coulomb interaction, Jahn-Teller distortion, and physics of topological berry phase. For example, the effect of finite large JH_{H} leads to an attractive particle-hole interaction, which favors to stabilize the charge ordering.Comment: 1 page, 1 figure, To appear in Phys. Rev. Let

    Determining the Electron-Phonon Coupling Strength in Correlated Electron Systems from Resonant Inelastic X-ray Scattering

    Full text link
    We show that high resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis demonstrates that the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross section. An alternative, very direct manner to extract the coupling is to use the one and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole life-time. This allows measurement of the e-p coupling on an absolute energy scale.Comment: 4 pages, 3 figure

    Orbital effects in manganites

    Get PDF
    In this paper I give a short review of some properties of the colossal magnetoresistance manganites, connected with the orbital degrees of freedom. Ions Mn{3+}, present in most of these compounds, have double orbital degeneracy and are strong Jahn-Teller ions, causing structural distortions and orbital ordering. Mechanisms leading to such ordering are shortly discussed, and the role of orbital degrees of freedom in different parts of the phase diagram of manganites is described. Special attention is paid to the properties of low-doped systems (doping 0.1 - 0.25), to overdoped systems (x > 0.5), and to the possibility of a novel type of orbital ordering in optimally doped ferromagnetic metallic manganites.Comment: 28 pages, 7 figures, to be published in J. Mod. Phys.

    Coupled multiple-mode theory for s±s_{\pm} pairing mechanism in iron based superconductors

    Get PDF
    We investigate the interplay between the magnetic and the superconducting degrees of freedom in unconventional multi-band superconductors such as iron pnictides. For this purpose a dynamical mode-mode coupling theory is developed based on the coupled Bethe-Salpeter equations. In order to investigate the region of the phase diagram not too far from the tetracritical point where the magnetic spin density wave, (SDW) and superconducting (SC) transition temperatures coincide, we also construct a Ginzburg - Landau functional including both SC and SDW fluctuations in a critical region above the transition temperatures. The fluctuation corrections tend to suppress the magnetic transition, but in the superconducting channel the intraband and interband contribution of the fluctuations nearly compensate each other.Comment: 17 pages, 5 figure

    On the relation between decoherence and spontaneous symmetry breaking

    Full text link
    We have recently shown that there is a limit to quantum coherence in many-particle spin qubits due to spontaneous symmetry breaking. These results were derived for the Lieb-Mattis spin model. Here we will show that the underlying mechanism of decoherence in systems with spontaneous symmetry breaking is in fact more general. We present here a generic route to finding the decoherence time associated with spontaneous symmetry breaking in many particle qubits, and subsequently we apply this approach to two model systems, indicating how the continuous symmetries in these models are spontaneously broken and discussing the relation of this symmetry breaking to the thin spectrum. We then present in detail the calculations that lead to the limit to quantum coherence, which is due to energy shifts in the thin spectrum.Comment: 14 pages, 5 figure

    Curvature induced magnonic crystal in nanowires

    Get PDF
    A new type of magnonic crystals, curvature induced ones, is realized in ferromagnetic nanowires with periodically deformed shape. A magnon band structure of such crystal is fully determined by its curvature: the developed theory is well confirmed by simulations. An application to nanoscale spintronic devises with the geometrically tunable parameters is proposed, namely, to filter elements.Comment: 21 pages, 6 figures, for submission to SciPos

    A value for directed communication situations

    Get PDF
    In this paper we introduce an extension of the model of restricted communication in cooperative games as introduced in Myerson (1977) by allowing communication links to be directed and the worth of a coalition to depend on the order in which the players enter the coalition. Therefore, we model the communication network by a directed graph and the cooperative game by a generalized characteristic function as introduced in Nowak and Radzik (1994). We generalize the Myerson value for undirected (or standard) communication situations to the context of directed communication and provide two axiomatizations of this digraph Myerson value using component efficiency and either fairness or the balanced contributions property

    TaIrTe4 a ternary Type-II Weyl semi-metal

    Full text link
    In metallic condensed matter systems two different types of Weyl fermions can in principle emerge, with either a vanishing (type-I) or with a finite (type-II) density of states at the Weyl node energy. So far only WTe2 and MoTe2 were predicted to be type-II Weyl semi-metals. Here we identify TaIrTe4 as a third member of this family of topological semi-metals. TaIrTe4 has the attractive feature that it hosts only four well-separated Weyl points, the minimum imposed by symmetry. Moreover, the resulting topological surface states - Fermi arcs connecting Weyl nodes of opposite chirality - extend to about 1/3 of the surface Brillouin zone. This large momentum-space separation is very favorable for detecting the Fermi arcs spectroscopically and in transport experiments
    corecore