2,052 research outputs found
Harmonic generation by atoms in circularly polarized two-color laser fields with coplanar polarizations and commensurate frequencies
The generation of harmonics by atoms or ions in a two-color, coplanar field
configuration with commensurate frequencies is investigated through both, an
analytical calculation based on the Lewenstein model and the numerical ab
initio solution of the time-dependent Schroedinger equation of a
two-dimensional model ion. Through the analytical model, selection rules for
the harmonic orders in this field configuration, a generalized cut-off for the
harmonic spectra, and an integral expression for the harmonic dipole strength
is provided. The numerical results are employed to test the predictions of the
analytical model. The scaling of the cut-off as a function of both, one of the
laser intensities and frequency ratio , as well as entire spectra for
different and laser intensities are presented and analyzed. The
theoretical cut-off is found to be an upper limit for the numerical results.
Other discrepancies between analytical model and numerical results are
clarified by taking into account the probabilities of the absorption processes
involved.Comment: 8 figure
Theory for the ultrafast ablation of graphite films
The physical mechanisms for damage formation in graphite films induced by
femtosecond laser pulses are analyzed using a microscopic electronic theory. We
describe the nonequilibrium dynamics of electrons and lattice by performing
molecular dynamics simulations on time-dependent potential energy surfaces. We
show that graphite has the unique property of exhibiting two distinct laser
induced structural instabilities. For high absorbed energies (> 3.3 eV/atom) we
find nonequilibrium melting followed by fast evaporation. For low intensities
above the damage threshold (> 2.0 eV/atom) ablation occurs via removal of
intact graphite sheets.Comment: 5 pages RevTeX, 3 PostScript figures, submitted to Phys. Re
Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials
Using an efficient optimal control scheme to determine the exciting fields,
we theoretically demonstrate the optical creation of vibrational intrinsic
localized modes (ILMs) in anharmonic perfect lattices with realistic
interatomic potentials. For systems with finite size, we show that ILMs can be
excited directly by applying a sequence of femtosecond visible laser pulses at
THz repetition rates. For periodic lattices, ILMs can be created indirectly via
decay of an unstable extended lattice mode which is excited optically either by
a sequence of pulses as described above or by a single picosecond far-infrared
laser pulse with linearly chirped frequency. In light of recent advances in
experimental laser pulse shaping capabilities, the approach is experimentally
promising.Comment: 20 pages, 7 eps figures. Accepted, Phys. Rev.
Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses
The generation of electron surface oscillations in overdense plasmas
irradiated at normal incidence by an intense laser pulse is investigated.
Two-dimensional (2D) particle-in-cell simulations show a transition from a
planar, electrostatic oscillation at , with the laser
frequency, to a 2D electromagnetic oscillation at frequency and
wavevector . A new electron parametric instability, involving the
decay of a 1D electrostatic oscillation into two surface waves, is introduced
to explain the basic features of the 2D oscillations. This effect leads to the
rippling of the plasma surface within a few laser cycles, and is likely to have
a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for
publication in Phys. Rev. Let
Bent crystal x-ray mirrors for time-resolved experiments with femtosecond laser-produced x-ray pulses
In the last few years, bent crystal x-ray mirrors have played an important role in time-resolved x-ray diffraction experiments when x-ray pulses from femtosecond laserproduced plasmas were used. Improvements in manufacturing techniques have significantly increased the quality of this type of mirror
Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon
Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration
Spallative ablation of dielectrics by X-ray laser
Short laser pulse in wide range of wavelengths, from infrared to X-ray,
disturbs electron-ion equilibrium and rises pressure in a heated layer. The
case where pulse duration is shorter than acoustic relaxation time
is considered in the paper. It is shown that this short pulse may cause
thermomechanical phenomena such as spallative ablation regardless to
wavelength. While the physics of electron-ion relaxation on wavelength and
various electron spectra of substances: there are spectra with an energy gap in
semiconductors and dielectrics opposed to gapless continuous spectra in metals.
The paper describes entire sequence of thermomechanical processes from
expansion, nucleation, foaming, and nanostructuring to spallation with
particular attention to spallation by X-ray pulse
Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV
A search for a Higgs boson decaying into invisible particles is performed
using the data collected at LEP by the L3 experiment at centre-of-mass energies
of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1
and 176.4 pb^-1. The observed candidates are consistent with the expectations
from Standard Model processes. In the hypothesis that the production cross
section of this Higgs boson equals the Standard Model one and the branching
ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set
at 95% confidence level
- …
