2,052 research outputs found

    Harmonic generation by atoms in circularly polarized two-color laser fields with coplanar polarizations and commensurate frequencies

    Get PDF
    The generation of harmonics by atoms or ions in a two-color, coplanar field configuration with commensurate frequencies is investigated through both, an analytical calculation based on the Lewenstein model and the numerical ab initio solution of the time-dependent Schroedinger equation of a two-dimensional model ion. Through the analytical model, selection rules for the harmonic orders in this field configuration, a generalized cut-off for the harmonic spectra, and an integral expression for the harmonic dipole strength is provided. The numerical results are employed to test the predictions of the analytical model. The scaling of the cut-off as a function of both, one of the laser intensities and frequency ratio η\eta, as well as entire spectra for different η\eta and laser intensities are presented and analyzed. The theoretical cut-off is found to be an upper limit for the numerical results. Other discrepancies between analytical model and numerical results are clarified by taking into account the probabilities of the absorption processes involved.Comment: 8 figure

    Theory for the ultrafast ablation of graphite films

    Full text link
    The physical mechanisms for damage formation in graphite films induced by femtosecond laser pulses are analyzed using a microscopic electronic theory. We describe the nonequilibrium dynamics of electrons and lattice by performing molecular dynamics simulations on time-dependent potential energy surfaces. We show that graphite has the unique property of exhibiting two distinct laser induced structural instabilities. For high absorbed energies (> 3.3 eV/atom) we find nonequilibrium melting followed by fast evaporation. For low intensities above the damage threshold (> 2.0 eV/atom) ablation occurs via removal of intact graphite sheets.Comment: 5 pages RevTeX, 3 PostScript figures, submitted to Phys. Re

    Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials

    Full text link
    Using an efficient optimal control scheme to determine the exciting fields, we theoretically demonstrate the optical creation of vibrational intrinsic localized modes (ILMs) in anharmonic perfect lattices with realistic interatomic potentials. For systems with finite size, we show that ILMs can be excited directly by applying a sequence of femtosecond visible laser pulses at THz repetition rates. For periodic lattices, ILMs can be created indirectly via decay of an unstable extended lattice mode which is excited optically either by a sequence of pulses as described above or by a single picosecond far-infrared laser pulse with linearly chirped frequency. In light of recent advances in experimental laser pulse shaping capabilities, the approach is experimentally promising.Comment: 20 pages, 7 eps figures. Accepted, Phys. Rev.

    Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses

    Full text link
    The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2ω2\omega, with ω\omega the laser frequency, to a 2D electromagnetic oscillation at frequency ω\omega and wavevector k>ω/ck>\omega/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.Comment: 9 pages (LaTeX, Revtex4), 4 GIF color figures, accepted for publication in Phys. Rev. Let

    Bent crystal x-ray mirrors for time-resolved experiments with femtosecond laser-produced x-ray pulses

    Get PDF
    In the last few years, bent crystal x-ray mirrors have played an important role in time-resolved x-ray diffraction experiments when x-ray pulses from femtosecond laserproduced plasmas were used. Improvements in manufacturing techniques have significantly increased the quality of this type of mirror

    Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Full text link
    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration

    Spallative ablation of dielectrics by X-ray laser

    Full text link
    Short laser pulse in wide range of wavelengths, from infrared to X-ray, disturbs electron-ion equilibrium and rises pressure in a heated layer. The case where pulse duration τL\tau_L is shorter than acoustic relaxation time tst_s is considered in the paper. It is shown that this short pulse may cause thermomechanical phenomena such as spallative ablation regardless to wavelength. While the physics of electron-ion relaxation on wavelength and various electron spectra of substances: there are spectra with an energy gap in semiconductors and dielectrics opposed to gapless continuous spectra in metals. The paper describes entire sequence of thermomechanical processes from expansion, nucleation, foaming, and nanostructuring to spallation with particular attention to spallation by X-ray pulse

    Search for an invisibly decaying Higgs boson in e^+e^- collisions at \sqrt{s} = 183 - 189 GeV

    Full text link
    A search for a Higgs boson decaying into invisible particles is performed using the data collected at LEP by the L3 experiment at centre-of-mass energies of 183 GeV and 189 GeV. The integrated luminosities are respectively 55.3 pb^-1 and 176.4 pb^-1. The observed candidates are consistent with the expectations from Standard Model processes. In the hypothesis that the production cross section of this Higgs boson equals the Standard Model one and the branching ratio into invisible particles is 100%, a lower mass limit of 89.2 GeV is set at 95% confidence level
    corecore