6,370 research outputs found
Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates
One or more small holes provide non-destructive windows to observe
corresponding closed systems, for example by measuring long time escape rates
of particles as a function of hole sizes and positions. To leading order the
escape rate of chaotic systems is proportional to the hole size and independent
of position. Here we give exact formulas for the subsequent terms, as sums of
correlation functions; these depend on hole size and position, hence yield
information on the closed system dynamics. Conversely, the theory can be
readily applied to experimental design, for example to control escape rates.Comment: Originally 4 pages and 2 eps figures incorporated into the text; v2
has more numerical results and discussion: now 6 pages, 4 figure
Au-Ag template stripped pattern for scanning probe investigations of DNA arrays produced by Dip Pen Nanolithography
We report on DNA arrays produced by Dip Pen Nanolithography (DPN) on a novel
Au-Ag micro patterned template stripped surface. DNA arrays have been
investigated by atomic force microscopy (AFM) and scanning tunnelling
microscopy (STM) showing that the patterned template stripped substrate enables
easy retrieval of the DPN-functionalized zone with a standard optical
microscope permitting a multi-instrument and multi-technique local detection
and analysis. Moreover the smooth surface of the Au squares (abput 5-10
angstrom roughness) allows to be sensitive to the hybridization of the
oligonucleotide array with label-free target DNA. Our Au-Ag substrates,
combining the retrieving capabilities of the patterned surface with the
smoothness of the template stripped technique, are candidates for the
investigation of DPN nanostructures and for the development of label free
detection methods for DNA nanoarrays based on the use of scanning probes.Comment: Langmuir (accepted
Improved photometry of SDSS crowded field images: Structure and dark matter content in the dwarf spheroidal galaxy Leo I
We explore how well crowded field point-source photometry can be accomplished
with SDSS data: We present a photometric pipeline based on DoPhot, and tuned
for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations
we show that the completeness of source extraction is above 80% to i < 21 (AB)
and a stellar surface density of about 200 sq.amin. Hence, a specialized data
pipeline can efficiently be used for e.g. nearby resolved galaxies in SDSS
images, where the standard SDSS photometric package Photo, when applied in
normal survey mode, gives poor results. We apply our pipeline to an area of
about 3.55sq.deg. around the dwarf spheroidal galaxy (dSph) Leo I, and
construct a high S/N star-count map of Leo I via an optimized filter in
color-magnitude space (g,r,i). Although the radial surface-density profile of
the dwarf deviates from the best fit empirical King model towards outer radii,
we find no evidence for tidal debris out to a stellar surface-density of
4*10^(-3) of the central value. We determine the total luminosity of Leo I, and
model its mass using the spherical and isotropic Jeans equation. Assuming that
'mass follows light' we constrain a lower limit of the total mass of the dSph
to be (1.7+/-0.2)*10^7 Msol. Contrary, if the mass in Leo I is dominated by a
constant density dark-matter (DM) halo, then the mass within the central 12' is
(2+/-0.6)*10^8 Msol. This leads to a mass-to-light ratio of >>6 (Ic_sol), and
possibly >75 if the DM halo dominates the mass and extends further out than
12'. In summary, our results show that Leo I is a symmetric, relaxed and bound
system; this supports the idea that Leo I is a dark-matter dominated system.Comment: 13 pages, 11 figures; accepted for publication in A
RR Lyrae stars in four globular clusters in the Fornax dwarf galaxy
(Abridged) We have surveyed four globular clusters in the Fornax dwarf galaxy
for RR Lyrae stars, using archival HST observations. We identify 197 new RR
Lyrae stars in these four clusters. Despite the short observational baseline,
we derive periods, light-curves, and photometric parameters for each. The
Fornax clusters have exceptionally large RR Lyrae specific frequencies compared
with the Galactic globular clusters. Furthermore, the Fornax cluster RR Lyrae
stars are unusual in that their characteristics are intermediate between the
two Galactic Oosterhoff groups. In this respect the Fornax clusters are similar
to the field populations in several dwarf galaxies. We revise previous
measurements of the HB morphology in each cluster. The Fornax clusters closely
resemble the ``young'' Galactic halo population defined by Zinn. The existence
of the second parameter effect among the Fornax clusters is also confirmed.
Finally, we determine foreground reddening and distance estimates for each
cluster. We find a mean distance modulus to Fornax of (m-M)_0 = 20.66 +/- 0.03
(random) +/- 0.15 (systematic). Our measurements are consistent with a line of
sight depth of 8-10 kpc for this galaxy, matching its projected dimensions, and
incompatible with tidal model explanations for the observed high velocity
dispersions in many dSph galaxies. Dark matter dominance is suggested.Comment: 26 pages, 6 figures. Accepted for publication in MNRAS. Table 2 and
Figure 2 will only be available in the electronic version. On-line data will
soon be available at http://www.ast.cam.ac.uk/STELLARPOPS/Fornax_RRlyr
Rare events, escape rates and quasistationarity: some exact formulae
We present a common framework to study decay and exchanges rates in a wide
class of dynamical systems. Several applications, ranging form the metric
theory of continuons fractions and the Shannon capacity of contrained systems
to the decay rate of metastable states, are given
Geometric entropy, area, and strong subadditivity
The trace over the degrees of freedom located in a subset of the space
transforms the vacuum state into a density matrix with non zero entropy. This
geometric entropy is believed to be deeply related to the entropy of black
holes. Indeed, previous calculations in the context of quantum field theory,
where the result is actually ultraviolet divergent, have shown that the
geometric entropy is proportional to the area for a very special type of
subsets. In this work we show that the area law follows in general from simple
considerations based on quantum mechanics and relativity. An essential
ingredient of our approach is the strong subadditive property of the quantum
mechanical entropy.Comment: Published versio
The Generalized Second Law implies a Quantum Singularity Theorem
The generalized second law can be used to prove a singularity theorem, by
generalizing the notion of a trapped surface to quantum situations. Like
Penrose's original singularity theorem, it implies that spacetime is null
geodesically incomplete inside black holes, and to the past of spatially
infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead,
the generalized second law requires that there only be a finite amount of
entropy producing processes in the past, unless there is a reversal of the
arrow of time. In asymptotically flat spacetime, the generalized second law
also rules out traversable wormholes, negative masses, and other forms of
faster-than-light travel between asymptotic regions, as well as closed timelike
curves. Furthermore it is impossible to form baby universes which eventually
become independent of the mother universe, or to restart inflation. Since the
semiclassical approximation is used only in regions with low curvature, it is
argued that the results may hold in full quantum gravity. An introductory
section describes the second law and its time-reverse, in ordinary and
generalized thermodynamics, using either the fine-grained or the coarse-grained
entropy. (The fine-grained version is used in all results except those relating
to the arrow of time.) A proof of the coarse-grained ordinary second law is
given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised
(4.1, 5.2), more comments on AdS. v3: major revisions including change of
title. v4: similar to published version, but with corrections to plan of
paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of
Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new
footnote
Ambiguity in the evaluation of the effective action on the cone
An ambiguity in the computation of the one-loop effective action for fields
living on a cone is illustrated. It is shown that the ambiguity arises due to
the non-commutativity of the regularization of ultraviolet and (conical)
boundary divergencies.Comment: REVTeX file, 10 pages. Comments on recent papers have been adde
HST Snaphot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441
[Abridged] We present the results of a Hubble Space Telescope snapshot
program to survey the inner region of the globular cluster NGC 6441 for its
variable stars. A total of 57 variable stars was found including 38 RR Lyrae
stars, 6 Population II Cepheids, and 12 long period variables. Of the RR Lyrae
stars observed in this survey, 26 are pulsating in the fundamental mode with a
mean period of 0.753d and 12 are first-overtone mode pulsators with a mean
period of 0.365d. These values match up very well with those found in
ground-based surveys. Combining all the available data for NGC 6441, we find
mean periods of 0.759d and 0.375d for the RRab and RRc stars, respectively. We
also find that the RR Lyrae in this survey are located in the same regions of a
period-amplitude diagram as those found in ground-based surveys. Although NGC
6441 is a metal-rich globular cluster, its RR Lyrae more closely resemble those
in Oosterhoff type II globular clusters. However, even compared to typical
Oosterhoff type II systems, the mean period of its RRab stars is unusually
long. We also derived I-band period-luminosity relations for the RR Lyrae
stars. Of the six Population II Cepheids, five are of W Virginis type and one
is a BL Herculis variable stars. This makes NGC 6441, along with NGC 6388, the
most metal-rich globular cluster known to contain these types of variable
stars. Another variable, V118, may also be a Population II Cepheid given its
long period and its separation in magnitude from the RR Lyrae stars. We argue
that there does not appear to be a change in the period-luminosity relation
slope between the BL Herculis and W Virginis stars, but that a change of slope
does occur when the RV Tauri stars are added to the period-luminosity relation.Comment: 28 pages, including 9 figures and 8 tables, emulateapj5/apjfonts
style. Accepted by the Astronomical Journal. Approximate publication date
September 2003. We recommend the interested reader to download the preprint
with full-resolution figures, which can be found at
http://www.astro.puc.cl/~mcatelan/Pritzl.zi
Entropies of the general nonextreme stationary axisymmetric black hole: statistical mechanics and thermodynamics
Starting from metric of the general nonextreme stationary axisymmetric black
hole in four-dimensional spacetime, both statistical-mechanical and
thermodynamical entropies are studied. First, by means of the "brick wall"
model in which the Dirichlet condition is replaced by a scattering ansatz for
the field functions at the horizon and with Pauli-Villars regularization
scheme, an expression for the statistical-mechanical entropy arising from the
nonminimally coupled scalar fields is obtained. Then, by using the conical
singularity method Mann and Solodukhin's result for the Kerr-Newman black hole
(Phys. Rev. D54, 3932(1996)) is extended to the general stationary black hole
and the nonminimally coupled scalar field. We last shown by comparing the two
results that the statistical-mechanical entropy and one-loop correction to the
thermodynamical entropy are equivalent for coupling . After
renormalization, a relation between the two entropies is given.Comment: 18 pages, Latex, nofigue. Accepted by Phys. Rev.
- …
