489,903 research outputs found

    Evolution of Magnetic Helicity and Energy Spectra of Solar Active Regions

    Full text link
    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30-60Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.Comment: 10 pages, 15 Figures, ApJ in pres

    Magnetic helicity and energy spectra of a solar active region

    Full text link
    We compute for the first time magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11-15 February 2011 at 20^o southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ~ 0.4 Mm^{-1}, corresponding to a scale of 2pi/k ~ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k^{-11/3} power law at large wavenumbers, which implies a k^{-5/3} spectrum for the modulus of the current helicity. A k^{-5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm^{-1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artefacts at small scales.Comment: 6 pages, 4 figures, ApJL (accepted

    Scale disparities and magnetohydrodynamics in the Earth’s core

    Get PDF
    Fluid motions driven by convection in the Earth’s fluid core sustain geomagnetic ­ fields by magnetohydrodynamic dynamo processes. The dynamics of the core is critically influenced by the combined effects of rotation and magnetic ­ fields. This paper attempts to illustrate the scale-related difficulties in modelling a convection-driven geodynamo by studying both linear and nonlinear convection in the presence of imposed toroidal and poloidal ­ fields. We show that there exist three extremely large disparities, as a direct consequence of small viscosity and rapid rotation of the Earth’s fluid core, in the spatial, temporal and amplitude scales of a convection-driven geodynamo. We also show that the structure and strength of convective motions, and, hence, the relevant dynamo action, are extremely sensitive to the intricate dynamical balance between the viscous, Coriolis and Lorentz forces; similarly, the structure and strength of the magnetic field generated by the dynamo process can depend very sensitively on the fluid flow. We suggest, therefore, that the zero Ekman number limit is strongly singular and that a stable convection-driven strong-­field geodynamo satisfying Taylor’s constraint may not exist. Instead, the geodynamo may vacillate between a strong ­field state, as at present, and a weak ­ field state, which is also unstable because it fails to convect sufficient heat

    Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-Block Correlation

    Full text link
    We examine the recovery of block sparse signals and extend the framework in two important directions; one by exploiting signals' intra-block correlation and the other by generalizing signals' block structure. We propose two families of algorithms based on the framework of block sparse Bayesian learning (BSBL). One family, directly derived from the BSBL framework, requires knowledge of the block structure. Another family, derived from an expanded BSBL framework, is based on a weaker assumption on the block structure, and can be used when the block structure is completely unknown. Using these algorithms we show that exploiting intra-block correlation is very helpful in improving recovery performance. These algorithms also shed light on how to modify existing algorithms or design new ones to exploit such correlation and improve performance.Comment: Matlab codes can be downloaded at: https://sites.google.com/site/researchbyzhang/bsbl, or http://dsp.ucsd.edu/~zhilin/BSBL.htm

    The effect of prior probabilities on quantification and propagation of imprecise probabilities resulting from small datasets

    Full text link
    This paper outlines a methodology for Bayesian multimodel uncertainty quantification (UQ) and propagation and presents an investigation into the effect of prior probabilities on the resulting uncertainties. The UQ methodology is adapted from the information-theoretic method previously presented by the authors (Zhang and Shields, 2018) to a fully Bayesian construction that enables greater flexibility in quantifying uncertainty in probability model form. Being Bayesian in nature and rooted in UQ from small datasets, prior probabilities in both probability model form and model parameters are shown to have a significant impact on quantified uncertainties and, consequently, on the uncertainties propagated through a physics-based model. These effects are specifically investigated for a simplified plate buckling problem with uncertainties in material properties derived from a small number of experiments using noninformative priors and priors derived from past studies of varying appropriateness. It is illustrated that prior probabilities can have a significant impact on multimodel UQ for small datasets and inappropriate (but seemingly reasonable) priors may even have lingering effects that bias probabilities even for large datasets. When applied to uncertainty propagation, this may result in probability bounds on response quantities that do not include the true probabilities.Comment: 36 pages, 12 figure
    corecore