4,649 research outputs found

    Quantifying the search for solid Li-ion electrolyte materials by anion: a data-driven perspective

    Get PDF
    We compile data and machine learned models of solid Li-ion electrolyte performance to assess the state of materials discovery efforts and build new insights for future efforts. Candidate electrolyte materials must satisfy several requirements, chief among them fast ionic conductivity and robust electrochemical stability. Considering these two requirements, we find new evidence to suggest that optimization of the sulfides for fast ionic conductivity and wide electrochemical stability may be more likely than optimization of the oxides, and that the oft-overlooked chlorides and bromides may be particularly promising families for Li-ion electrolytes. We also find that the nitrides and phosphides appear to be the most promising material families for electrolytes stable against Li-metal anodes. Furthermore, the spread of the existing data in performance space suggests that fast conducting materials that are stable against both Li metal and a >4V cathode are exceedingly rare, and that a multiple-electrolyte architecture is a more likely path to successfully realizing a solid-state Li metal battery by approximately an order of magnitude or more. Our model is validated by its reproduction of well-known trends that have emerged from the limited existing data in recent years, namely that the electronegativity of the lattice anion correlates with ionic conductivity and electrochemical stability. In this work, we leverage the existing data to make solid electrolyte performance trends quantitative for the first time, building a roadmap to complement material discovery efforts around desired material performance.Comment: Main text is 41 pages with 3 figures and 2 tables; attached supplemental information is 8 pages with 3 figure

    Bayesian Nash Equilibria and Bell Inequalities

    Full text link
    Games with incomplete information are formulated in a multi-sector probability matrix formalism that can cope with quantum as well as classical strategies. An analysis of classical and quantum strategy in a multi-sector extension of the game of Battle of Sexes clarifies the two distinct roles of nonlocal strategies, and establish the direct link between the true quantum gain of game's payoff and the breaking of Bell inequalities.Comment: 6 pages, LaTeX JPSJ 2 column format, changes in sections 1, 3 and 4, added reference

    Equivalence of Local and Separable Realizations of the Discontinuity-Inducing Contact Interaction and Its Perturbative Renormalizability

    Full text link
    We prove that the separable and local approximations of the discontinuity-inducing zero-range interaction in one-dimensional quantum mechanics are equivalent. We further show that the interaction allows the perturbative treatment through the coupling renormalization. Keywords: one-dimensional system, generalized contact interaction, renormalization, perturbative expansion. PACS Nos: 3.65.-w, 11.10.Gh, 31.15.MdComment: ReVTeX 7pgs, doubl column, no figure, See also the website http://www.mech.kochi-tech.ac.jp/cheon

    Level spacing distribution of pseudointegrable billiard

    Full text link
    In this paper, we examine the level spacing distribution P(S)P(S) of the rectangular billiard with a single point-like scatterer, which is known as pseudointegrable. It is shown that the observed P(S)P(S) is a new type, which is quite different from the previous conclusion. Even in the strong coupling limit, the Poisson-like behavior rather than Wigner-like is seen for S>1S>1, although the level repulsion still remains in the small SS region. The difference from the previous works is analyzed in detail.Comment: 11 pages, REVTeX file, 3 PostScript Figure

    Periodic Orbits in Polygonal Billiards

    Full text link
    We review some properties of periodic orbit families in polygonal billiards and discuss in particular a sum rule that they obey. In addition, we provide algorithms to determine periodic orbit families and present numerical results that shed new light on the proliferation law and its variation with the genus of the invariant surface. Finally, we deal with correlations in the length spectrum and find that long orbits display Poisson fluctuations.Comment: 30 pages (Latex) including 11 figure

    An Analysis of the Quantum Penny Flip Game using Geometric Algebra

    Full text link
    We analyze the quantum penny flip game using geometric algebra and so determine all possible unitary transformations which enable the player Q to implement a winning strategy. Geometric algebra provides a clear visual picture of the quantum game and its strategies, as well as providing a simple and direct derivation of the winning transformation, which we demonstrate can be parametrized by two angles. For comparison we derive the same general winning strategy by conventional means using density matrices.Comment: 8 Pages, 1 Figure, accepted for publication in the Journal of Physical Society of Japa

    A general approximation of quantum graph vertex couplings by scaled Schroedinger operators on thin branched manifolds

    Full text link
    We demonstrate that any self-adjoint coupling in a quantum graph vertex can be approximated by a family of magnetic Schroedinger operators on a tubular network built over the graph. If such a manifold has a boundary, Neumann conditions are imposed at it. The procedure involves a local change of graph topology in the vicinity of the vertex; the approximation scheme constructed on the graph is subsequently `lifted' to the manifold. For the corresponding operator a norm-resolvent convergence is proved, with the natural identification map, as the tube diameters tend to zero.Comment: 19 pages, one figure; introduction amended and some references added, to appear in CM

    Quantum phenomenology of conjunction fallacy

    Full text link
    A quantum-like description of human decision process is developed, and a heuristic argument supporting the theory as sound phenomenology is given. It is shown to be capable of quantitatively explaining the conjunction fallacy in the same footing as the violation of sure-thing principle.Comment: LaTeX 8 pages, 2 figure

    Quantum Matching Pennies Game

    Full text link
    A quantum version of the Matching Pennies (MP) game is proposed that is played using an Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting. We construct the quantum game without using the state vectors, while considering only the quantum mechanical joint probabilities relevant to the EPR-Bohm setting. We embed the classical game within the quantum game such that the classical MP game results when the quantum mechanical joint probabilities become factorizable. We report new Nash equilibria in the quantum MP game that emerge when the quantum mechanical joint probabilities maximally violate the Clauser-Horne-Shimony-Holt form of Bell's inequality.Comment: Revised in light of referees' comments, submitted to Journal of the Physical Society of Japan, 14 pages, 1 figur

    Above-Room-Temperature Ferromagnetism in GaSb/Mn Digital Alloys

    Full text link
    Digital alloys of GaSb/Mn have been fabricated by molecular beam epitaxy. Transmission electron micrographs showed good crystal quality with individual Mn-containing layers well resolved; no evidence of 3D MnSb precipitates was seen in as-grown samples. All samples studied exhibited ferromagnetism with temperature dependent hysteresis loops in the magnetization accompanied by metallic p-type conductivity with a strong anomalous Hall effect (AHE) up to 400 K (limited by the experimental setup). The anomalous Hall effect shows hysteresis loops at low temperatures and above room temperature very similar to those seen in the magnetization. The strong AHE with hysteresis indicates that the holes interact with the Mn spins above room temperature. All samples are metallic, which is important for spintronics applications. * To whom correspondence should be addressed. E-mail: [email protected]
    corecore