325,034 research outputs found

    Nonparametric IV estimation of shape-invariant Engel curves

    Get PDF
    This paper concerns the identification and estimation of a shape-invariant Engel curve system with endogenous total expenditure. The shape-invariant specification involves a common shift parameter for each demographic group in a pooled system of Engel curves. Our focus is on the identification and estimation of both the nonparametric shape of the Engel curve and the parametric specification of the demographic scaling parameters. We present a new identification condition, closely related to the concept of bounded completeness in statistics. The estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric IV regression when the endogenous regressor has unbounded support. Root-n asymptotic normality and semiparametric efficiency of the parametric components are also given under a set of ‘low-level’ sufficient conditions. Monte Carlo simulations shed lights on the choice of smoothing parameters and demonstrate that the sieve IV estimator performs well. An application is made to the estimation of Engel curves using the UK Family Expenditure Survey and shows the importance of adjusting for endogeneity in terms of both the curvature and demographic parameters of systems of Engel curves

    Probing spin entanglement by gate-voltage-controlled interference of current correlation in quantum spin Hall insulators

    Full text link
    We propose an entanglement detector composed of two quantum spin Hall insulators and a side gate deposited on one of the edge channels. For an ac gate voltage, the differential noise contributed from the entangled electron pairs exhibits the nontrivial step structures, from which the spin entanglement concurrence can be easily obtained. The possible spin dephasing effects in the quantum spin Hall insulators are also included.Comment: Physics Letters A in pres

    Addressing business agility challenges with enterprise systems

    Get PDF
    It is clear that systems agility (i.e., having a responsive IT infrastructure that can be changed quickly to meet changing business needs) has become a critical component of organizational agility. However, skeptics continue to suggest that, despite the benefits enterprise system packages provide, they are constraining choices for firms faced with agility challenges. The reason for this skepticism is that the tight integration between different parts of the business that enables many enterprise systems\u27 benefits also increases the systems\u27 complexity, and this increased complexity, say the skeptics, increases the difficulty of changing systems when business needs change. These persistent concerns motivated us to conduct a series of interviews with business and IT managers in 15 firms to identify how they addressed, in total, 57 different business agility challenges. Our analysis suggests that when the challenges involved an enterprise system, firms were able to address a high percentage of their challenges with four options that avoid the difficulties associated with changing the complex core system: capabilities already built-in to the package but not previously used, leveraging globally consistent integrated data already available, using add-on systems available on the market that easily interfaced with the existing enterprise system, and vendor provided patches that automatically updated the code. These findings have important implications for organizations with and without enterprise system architectures

    Why are some BL Lacs detected by \fermi, but others not ?

    Full text link
    By cross-correlating an archival sample of 170 BL Lacs with 2 year \fermilat AGN sample, we have compiled a sample of 100 BL Lacs with \fermi detection (FBLs), and a sample of 70 non-\fermi BL Lacs (NFBLs). We compared various parameters of FBLs with those of NFBLs, including the redshift, the low frequency radio luminosity at 408 MHz (L408MHzL_{\rm 408MHz}), the absolute magnitude of host galaxies (MhostM_{\rm host}), the polarization fraction from NVSS survey (PNVSSP_{\rm NVSS}), the observed arcsecond scale radio core flux at 5 GHz (FcoreF_{\rm core}) and jet Doppler factor; all the parameters are directly \textbf{measured} or derived from available data from literatures. We found that the Doppler factor is on average larger in FBLs than in NFBLs, and the Fermi γFermi~ \gamma-ray detection rate is higher in sources with higher Doppler factor. In contrast, there are no significant differences in terms of the intrinsic parameters of redshift, L408MHz L_{\rm 408MHz}, Mhost M_{\rm host} and PNVSS P_{\rm NVSS}. FBLs seem to have a higher probability of exhibiting measurable proper motion. These results strongly indicate a higher beaming effect in FBLs compared to NFBLs. The radio core flux is found to be strongly correlated with γ\gamma-ray flux, which remains after excluding the common dependence of the Doppler factor. At the fixed Doppler factor, FBLs have systematically larger radio core flux than NFBLs, implying lower γ\gamma-ray emission in NFBLs since the radio and γ\gamma-ray flux are significantly correlated. Our results indicate that the Doppler factor is an important parameter of γ\gamma-ray detection, the non-detection of γ\gamma-ray emission in NFBLs is likely due to low beaming effect, and/or low intrinsic γ\gamma-ray flux, and the gamma-rays are likely produced co-spatially with the arcsecond-scale radio core radiation and mainly through the SSC process.Comment: 6 pages, 6 figures, accepted by A&

    Variable-Length Coding with Feedback: Finite-Length Codewords and Periodic Decoding

    Full text link
    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of single-user memoryless channels. Recently Polyanskiy et al. studied the benefit of variable-length feedback with termination (VLFT) codes in the non-asymptotic regime. In that work, achievability is based on an infinite length random code and decoding is attempted at every symbol. The coding rate backoff from capacity due to channel dispersion is greatly reduced with feedback, allowing capacity to be approached with surprisingly small expected latency. This paper is mainly concerned with VLFT codes based on finite-length codes and decoding attempts only at certain specified decoding times. The penalties of using a finite block-length NN and a sequence of specified decoding times are studied. This paper shows that properly scaling NN with the expected latency can achieve the same performance up to constant terms as with N=N = \infty. The penalty introduced by periodic decoding times is a linear term of the interval between decoding times and hence the performance approaches capacity as the expected latency grows if the interval between decoding times grows sub-linearly with the expected latency.Comment: 8 pages. A shorten version is submitted to ISIT 201

    A Lattice Boltzmann method for simulations of liquid-vapor thermal flows

    Full text link
    We present a novel lattice Boltzmann method that has a capability of simulating thermodynamic multiphase flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this new method, a liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure

    A Rate-Compatible Sphere-Packing Analysis of Feedback Coding with Limited Retransmissions

    Full text link
    Recent work by Polyanskiy et al. and Chen et al. has excited new interest in using feedback to approach capacity with low latency. Polyanskiy showed that feedback identifying the first symbol at which decoding is successful allows capacity to be approached with surprisingly low latency. This paper uses Chen's rate-compatible sphere-packing (RCSP) analysis to study what happens when symbols must be transmitted in packets, as with a traditional hybrid ARQ system, and limited to relatively few (six or fewer) incremental transmissions. Numerical optimizations find the series of progressively growing cumulative block lengths that enable RCSP to approach capacity with the minimum possible latency. RCSP analysis shows that five incremental transmissions are sufficient to achieve 92% of capacity with an average block length of fewer than 101 symbols on the AWGN channel with SNR of 2.0 dB. The RCSP analysis provides a decoding error trajectory that specifies the decoding error rate for each cumulative block length. Though RCSP is an idealization, an example tail-biting convolutional code matches the RCSP decoding error trajectory and achieves 91% of capacity with an average block length of 102 symbols on the AWGN channel with SNR of 2.0 dB. We also show how RCSP analysis can be used in cases where packets have deadlines associated with them (leading to an outage probability).Comment: To be published at the 2012 IEEE International Symposium on Information Theory, Cambridge, MA, USA. Updated to incorporate reviewers' comments and add new figure
    corecore