1,106 research outputs found
Energy absorption by polymer crazing
During the past thirty years, a tremendous amount of research was done on the development of crazing in polymers. The phenomenon of crazing was recognized as an unusual deformation behavior associated with a process of molecular orientation in a solid to resist failure. The craze absorbs a fairly large amount of energy during the crazing process. When a craze does occur the surrounding bulk material is usually stretched to several hundred percent of its original dimension and creates a new phase. The total energy absorbed by a craze during the crazing process in creep was calculated analytically with the help of some experimental measurements. A comparison of the energy absorption by the new phase and that by the original bulk uncrazed medium is made
Torsion induces Gravity
In this work the Poincare-Chern Simons and Anti de Sitter Chern Simons
gravities are studied. For both a solution that can be casted as a black hole
with manifest torsion is found. Those solutions resemble Schwarzschild and
Schwarzschild-AdS solutions respectively.Comment: 4 pages, RevTe
Novel magnetic orderings in the kagome Kondo-lattice model
We consider the Kondo-lattice model on the kagome lattice and study its
weak-coupling instabilities at band filling fractions for which the Fermi
surface has singularities. These singularites include Dirac points, quadratic
Fermi points in contact with a flat band, and Van Hove saddle points. By
combining a controlled analytical approach with large-scale numerical
simulations, we demonstrate that the weak-coupling instabilities of the
Kondo-lattice model lead to exotic magnetic orderings. In particular, some of
these magnetic orderings produce a spontaneous quantum anomalous Hall state.Comment: 15 pages, 11 figure
Orbital disorder induced by charge fluctuations in vanadium spinels
Motivated by recent experiments on vanadium spinels, VO, that show
an increasing degree of electronic delocalization for smaller cation sizes, we
study the evolution of orbital ordering (OO) between the strong and
intermediate-coupling regimes of a multi-orbital Hubbard Hamiltonian. The
underlying magnetic ordering of the Mott insulating state leads to a rapid
suppression of OO due to enhanced charge fluctuations along ferromagnetic
bonds. Orbital double-occupancy is rather low at the transition point
indicating that the system is in the crossover region between strong and
intermediate-coupling regimes when the orbital degrees of freedom become
disordered
In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD
Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology
The causal structure of spacetime is a parameterized Randers geometry
There is a by now well-established isomorphism between stationary
4-dimensional spacetimes and 3-dimensional purely spatial Randers geometries -
these Randers geometries being a particular case of the more general class of
3-dimensional Finsler geometries. We point out that in stably causal
spacetimes, by using the (time-dependent) ADM decomposition, this result can be
extended to general non-stationary spacetimes - the causal structure (conformal
structure) of the full spacetime is completely encoded in a parameterized
(time-dependent) class of Randers spaces, which can then be used to define a
Fermat principle, and also to reconstruct the null cones and causal structure.Comment: 8 page
In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD
Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology
Carrier dynamics and coherent acoustic phonons in nitride heterostructures
We model generation and propagation of coherent acoustic phonons in
piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode
structure and compute the time resolved reflectivity signal in simulated
pump-probe experiments. Carriers are created in the InGaN wells by ultrafast
pumping below the GaN band gap and the dynamics of the photoexcited carriers is
treated in a Boltzmann equation framework. Coherent acoustic phonons are
generated in the quantum well via both deformation potential electron-phonon
and piezoelectric electron-phonon interaction with photogenerated carriers,
with the latter mechanism being the dominant one. Coherent longitudinal
acoustic phonons propagate into the structure at the sound speed modifying the
optical properties and giving rise to a giant oscillatory differential
reflectivity signal. We demonstrate that coherent optical control of the
differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure
Concise theory of chiral lipid membranes
A theory of chiral lipid membranes is proposed on the basis of a concise free
energy density which includes the contributions of the bending and the surface
tension of membranes, as well as the chirality and orientational variation of
tilting molecules. This theory is consistent with the previous experiments
[J.M. Schnur \textit{et al.}, Science \textbf{264}, 945 (1994); M.S. Spector
\textit{et al.}, Langmuir \textbf{14}, 3493 (1998); Y. Zhao, \textit{et al.},
Proc. Natl. Acad. Sci. USA \textbf{102}, 7438 (2005)] on self-assembled chiral
lipid membranes of DCPC. A torus with the ratio between its two
generated radii larger than is predicted from the Euler-Lagrange
equations. It is found that tubules with helically modulated tilting state are
not admitted by the Euler-Lagrange equations, and that they are less
energetically favorable than helical ripples in tubules. The pitch angles of
helical ripples are theoretically estimated to be about 0 and
35, which are close to the most frequent values 5 and
28 observed in the experiment [N. Mahajan \textit{et al.}, Langmuir
\textbf{22}, 1973 (2006)]. Additionally, the present theory can explain twisted
ribbons of achiral cationic amphiphiles interacting with chiral tartrate
counterions. The ratio between the width and pitch of twisted ribbons is
predicted to be proportional to the relative concentration difference of left-
and right-handed enantiomers in the low relative concentration difference
region, which is in good agreement with the experiment [R. Oda \textit{et al.},
Nature (London) \textbf{399}, 566 (1999)].Comment: 14 pages, 7 figure
- …
