150,502 research outputs found
The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics
We consider the class of Levi nondegenerate hypersurfaces in \bC^{n+1}
that admit a local (CR transversal) embedding, near a point , into a
standard nondegenerate hyperquadric in with codimension
small compared to the CR dimension of . We show that, for hypersurfaces
in this class, there is a normal form (which is closely related to the
embedding) such that any local equivalence between two hypersurfaces in normal
form must be an automorphism of the associated tangent hyperquadric. We also
show that if the signature of and that of the standard hyperquadric in
\bC^{N+1} are the same, then the embedding is rigid in the sense that any
other embedding must be the original embedding composed with an automorphism of
the quadric
Structure and spectroscopy of doped helium clusters using quantum Monte Carlo techniques
We present a comparative study of the rotational characteristics of various
molecule-doped 4He clusters using quantum Monte Carlo techniques. The
theoretical conclusions obtained from both zero and finite temperature Monte
Carlo studies confirm the presence of two different dynamical regimes that
correlate with the magnitude of the rotational constant of the molecule, i.e.,
fast or slow rotors. For a slow rotor, the effective rotational constant for
the molecule inside the helium droplet can be determined by a microscopic
two-fluid model in which helium densities computed by path integral Monte Carlo
are used as input, as well as by direct computation of excited energy levels.
For a faster rotor, the conditions for application of the two-fluid model for
dynamical analysis are usually not fulfilled and the direct determination of
excitation energies is then mandatory. Quantitative studies for three molecules
are summarized, showing in each case excellent agreement with experimental
results
Magneto-controlled nonlinear optical materials
We exploit theoretically a magneto-controlled nonlinear optical material
which contains ferromagnetic nanoparticles with a non-magnetic metallic
nonlinear shell in a host fluid. Such an optical material can have anisotropic
linear and nonlinear optical properties and a giant enhancement of
nonlinearity, as well as an attractive figure of merit.Comment: 11 pages, 2 figures. To be published in Appl. Phys. Let
Sum-of-squares of polynomials approach to nonlinear stability of fluid flows: an example of application
With the goal of providing the first example of application of a recently proposed method, thus demonstrating its ability to give results in principle, global stability of a version of the rotating Couette flow is examined. The flow depends on the Reynolds number and a parameter characterising the magnitude of the Coriolis force. By converting the original Navier-Stokes equations to a finite-dimensional uncertain dynamical system using a partial Galerkin expansion, high-degree polynomial Lyapunov functionals were found by sum-of-squares-of-polynomials optimization. It is demonstrated that the proposed method allows obtaining the exact global stability limit for this flow in a range of values of the parameter characterising the Coriolis force. Outside this range a lower bound for the global stability limit was obtained, which is still better than the energy stability limit. In the course of the study several results meaningful in the context of the method used were also obtained. Overall, the results obtained demonstrate the applicability of the recently proposed approach to global stability of the fluid flows. To the best of our knowledge, it is the first case in which global stability of a fluid flow has been proved by a generic method for the value of a Reynolds number greater than that which could be achieved with the energy stability approach
Distilling Quantum Entanglement via Mode-Matched Filtering
We propose a new avenue towards distillation of quantum entanglement that is
implemented by directly passing the entangled qubits through a mode-matched
filter. This approach can be applied to a common class of entanglement
impurities appearing in photonic systems where the impurities inherently occupy
different spatiotemporal modes than the entangled qubits. As a specific
application, we show that our method can be used to significantly purify the
telecom-band entanglement generated via the Kerr nonlinearity in single-mode
fibers where a substantial amount of Raman-scattering noise is concomitantly
produced.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
Dirac cohomology, elliptic representations and endoscopy
The first part (Sections 1-6) of this paper is a survey of some of the recent
developments in the theory of Dirac cohomology, especially the relationship of
Dirac cohomology with (g,K)-cohomology and nilpotent Lie algebra cohomology;
the second part (Sections 7-12) is devoted to understanding the unitary
elliptic representations and endoscopic transfer by using the techniques in
Dirac cohomology. A few problems and conjectures are proposed for further
investigations.Comment: This paper will appear in `Representations of Reductive Groups, in
Honor of 60th Birthday of David Vogan', edited by M. Nervins and P. Trapa,
published by Springe
Ultra-bright omni-directional collective emission of correlated photon pairs from atomic vapors
Spontaneous four-wave mixing can generate highly correlated photon pairs from
atomic vapors. We show that multi-photon pumping of dipole-forbidden
transitions in a recoil-free geometry can result in ultra-bright pair-emission
in the full 4\pi solid angle, while strongly suppresses background Rayleigh
scattering and associated atomic heating, Such a system can produce photon
pairs at rates of ~ 10 ^12 per second, given only moderate optical depths of 10
~ 100, or alternatively, the system can generate paired photons with
sub-natural bandwidths at lower production rates. We derive a rate-equation
based theory of the collective atomic population and coherence dynamics, and
present numerical simulations for a toy model, as well as realistic model
systems based on 133 Cs and 171 Yb level structures. Lastly, we demonstrate
that dark-state adiabatic following (EIT) and/or timescale hierarchy protects
the paired photons from reabsorption as they propagate through an optically
thick sample
Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines
We show that pulse shaping techniques can be applied to tailor the ultrafast
temporal response of the strongly confined and enhanced optical near fields in
the feed gap of resonant optical antennas (ROAs). Using finite-difference
time-domain (FDTD) simulations followed by Fourier transformation, we obtain
the impulse response of a nano structure in the frequency domain, which allows
obtaining its temporal response to any arbitrary pulse shape. We apply the
method to achieve deterministic optimal temporal field compression in ROAs with
reduced symmetry and in a two-wire transmission line connected to a symmetric
dipole antenna. The method described here will be of importance for experiments
involving coherent control of field propagation in nanophotonic structures and
of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure
Leveraging legacy codes to distributed problem solving environments: A web service approach
This paper describes techniques used to leverage high performance legacy codes as CORBA components to a distributed problem solving environment. It first briefly introduces the software architecture adopted by the environment. Then it presents a CORBA oriented wrapper generator (COWG) which can be used to automatically wrap high performance legacy codes as CORBA components. Two legacy codes have been wrapped with COWG. One is an MPI-based molecular dynamic simulation (MDS) code, the other is a finite element based computational fluid dynamics (CFD) code for simulating incompressible Navier-Stokes flows. Performance comparisons between runs of the MDS CORBA component and the original MDS legacy code on a cluster of workstations and on a parallel computer are also presented. Wrapped as CORBA components, these legacy codes can be reused in a distributed computing environment. The first case shows that high performance can be maintained with the wrapped MDS component. The second case shows that a Web user can submit a task to the wrapped CFD component through a Web page without knowing the exact implementation of the component. In this way, a user’s desktop computing environment can be extended to a high performance computing environment using a cluster of workstations or a parallel computer
On-demand generation of entanglement of atomic qubits via optical interferometry
The problem of on-demand generation of entanglement between single-atom
qubits via a common photonic channel is examined within the framework of
optical interferometry. As expected, for a Mach-Zehnder interferometer with
coherent laser beam as input, a high-finesse optical cavity is required to
overcome sensitivity to spontaneous emission. We show, however, that with a
twin-Fock input, useful entanglement can in principle be created without
cavity-enhancement. Both approaches require single-photon resolving detectors,
and best results would be obtained by combining both cavity-feedback and
twin-Fock inputs. Such an approach may allow a fidelity of using a
two-photon input and currently available mirror and detector technology. In
addition, we study interferometers based on NOON states and show that they
perform similarly to the twin-Fock states, yet without the need for
high-precision photo-detectors. The present interferometrical approach can
serve as a universal, scalable circuit element for quantum information
processing, from which fast quantum gates, deterministic teleportation,
entanglement swapping , can be realized with the aid of single-qubit
operations.Comment: To be published in PR
- …
