35,383 research outputs found
Recommended from our members
Minimally supervised induction of morphology through bitexts
textA knowledge of morphology can be useful for many natural language processing systems. Thus, much effort has been expended in developing accurate computational tools for morphology that lemmatize, segment and generate new forms. The most powerful and accurate of these have been manually encoded, such endeavors being without exception expensive and time-consuming. There have been consequently many attempts to reduce this cost in the development of morphological systems through the development of unsupervised or minimally supervised algorithms and learning methods for acquisition of morphology. These efforts have yet to produce a tool that approaches the performance of manually encoded systems.
Here, I present a strategy for dealing with morphological clustering and segmentation in a minimally supervised manner but one that will be more linguistically informed than previous unsupervised approaches. That is, this study will attempt to induce clusters of words from an unannotated text that are inflectional variants of each other. Then a set of inflectional suffixes by part-of-speech will be induced from these clusters. This level of detail is made possible by a method known as alignment and transfer (AT), among other names, an approach that uses aligned bitexts to transfer linguistic resources developed for one language–the source language–to another language–the target. This approach has a further advantage in that it allows a reduction in the amount of training data without a significant degradation in performance making it useful in applications targeted at data collected from endangered languages. In the current study, however, I use English as the source and German as the target for ease of evaluation and for certain typlogical properties of German. The two main tasks, that of clustering and segmentation, are approached as sequential tasks with the clustering informing the segmentation to allow for greater accuracy in morphological analysis.
While the performance of these methods does not exceed the current roster of unsupervised or minimally supervised approaches to morphology acquisition, it attempts to integrate more learning methods than previous studies. Furthermore, it attempts to learn inflectional morphology as opposed to derivational morphology, which is a crucial distinction in linguistics.Linguistic
Long-Wavelength Excesses in Two Highly Obscured High-Mass X-Ray Binaries: IGR J16318–4848 and GX 301–2
We present evidence for excess long-wavelength emission from two high-mass X-ray binaries, IGR J16318-4848 and GX 301-2, that show enormous obscuration (N_H ≃ 10^(23)-10^(24) cm^(-2)) in their X-ray spectra. Using archival near- and mid-infrared data, we show that the spectral energy distributions of IGR J16318-4848 and GX 301-2 are substantially higher in the mid-infrared than their expected stellar emission. We successfully fit the excesses with ~1000 K blackbodies, which suggests that they are due to warm circumstellar dust that also gives rise to the X-ray absorption. However, we need further observations to constrain the detailed properties of the excesses. This discovery highlights the importance of mid-infrared observations for understanding highly obscured X-ray binaries
Velocity Distributions and Correlations in Homogeneously Heated Granular Media
We compare the steady state velocity distributions from our three-dimensional
inelastic hard sphere molecular dynamics simulation for homogeneously heated
granular media, with the predictions of a mean field-type Enskog-Boltzmann
equation for inelastic hard spheres [van Noije & Ernst, Gran. Matt. {\bf 1}, 57
(1998)]. Although we find qualitative agreement for all values of density and
inelasticity, the quantitative disagreement approaches at high
inelasticity or density. By contrast the predictions of the pseudo-Maxwell
molecule model [Carrillo, Cercignani & Gamba, Phys. Rev. E, {\bf 62}, 7700
(2000)] are both qualitatively and quantitatively different from those of our
simulation. We also measure short-range and long-range velocity correlations
exhibiting non-zero correlations at contact before the collision, and being
consistent with a slow algebraic decay over a decade in the unit of the
diameter of the particle, proportional to , where . The existence of these correlations imply the failure of the
molecular chaos assumption and the mean field approximation, which is
responsible for the quantitative disagreement of the inelastic hard sphere
kinetic theory.Comment: 23 pages, 15 figures, Phys. Rev. E, in pres
Photonic band gap and x-ray optics in warm dense matter
Photonic band gaps for the soft x-rays, formed in the periodic structures of
solids or dense plasmas, are theoretically investigated. Optical manipulation
mechanisms for the soft x-rays, which are based on these band gaps, are
computationally demonstrated. The reflection and amplification of the soft
x-rays, and the compression and stretching of chirped soft x-ray pulses are
discussed. A scheme for lasing with atoms with two energy levels, utilizing the
band gap, is also studied.Comment: 3 figures, will be published on Po
Theory of Microwave Parametric Down Conversion and Squeezing Using Circuit QED
We study theoretically the parametric down conversion and squeezing of
microwaves using cavity quantum electrodynamics of a superconducting Cooper
pair box (CPB) qubit located inside a transmission line resonator. The
non-linear susceptibility \chi_2 describing three-wave mixing can be tuned by
dc gate voltage applied to the CPB and vanishes by symmetry at the charge
degeneracy point. We show that the coherent coupling of different cavity modes
through the qubit can generate a squeezed state. Based on parameters realized
in recent successful circuit QED experiments, squeezing of 95% ~ 13dB below the
vacuum noise level should be readily achievable.Comment: 4 pages, accepted for publication in Phys. Rev. Let
Optical study of the hyper-luminous X-ray source 2XMM J011942.7+032421
We present the identification and characterization of the optical counterpart
to 2XMM J011942.7+032421, one of the most luminous and distant ultra-luminous
X-ray sources (ULXs). The counterpart is located near a star forming region in
a spiral arm of the galaxy NGC 470 with u, g, and r magnitudes of 21.53, 21.69,
and 21.71 mags, respectively. The luminosity of the counterpart is much larger
than that of a single O-type star, indicating that it may be a stellar cluster.
Our optical spectroscopic observations confirm the association of the X-ray
source and the optical counterpart with its host galaxy NGC 470, which
validates the high, > 10^41 erg/s, X-ray luminosity of the source. Its optical
spectrum is embedded with numerous emission lines, including H recombination
lines, metallic forbidden lines and more notably the high-ionization HeII
(lambda 4686 A) line. This line shows a large velocity dispersion of
410 \kms, consistent with the existence of a compact (< 5 AU) highly-ionized
accretion disc rotating around the central X-ray source. The 1.4 x 10^37 erg/s
luminosity of the HeII line emission makes the source one of the most luminous
ULXs in the emission of that line. This, together with the high X-ray
luminosity and the large velocity dispersion of the HeII emission, suggests
that the source is an ideal candidate for more extensive follow-up observations
for understanding the nature of hyper-luminous X-ray sources, a more luminous
subgroup of ULXs and more likely candidates for intermediate-mass black holes.Comment: Accepted for publication in Astrophysical journal Letters, 14 pages,
3 figure
- …
