5,040 research outputs found

    Correlation Inequalities for Quantum Spin Systems with Quenched Centered Disorder

    Full text link
    It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved (arXiv:cond-mat/0612371) in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.Comment: 4 page

    Thermodynamic Limit for Finite Dimensional Classical and Quantum Disordered Systems

    Full text link
    We provide a very simple proof for the existence of the thermodynamic limit for the quenched specific pressure for classical and quantum disordered systems on a dd-dimensional lattice, including spin glasses. We develop a method which relies simply on Jensen's inequality and which works for any disorder distribution with the only condition (stability) that the quenched specific pressure is bounded.Comment: 14 pages. Final version, accepted for publication on Rev. Math. Phy

    Interaction Flip Identities for non Centered Spin Glasses

    Full text link
    We consider spin glass models with non-centered interactions and investigate the effect, on the random free energies, of flipping the interaction in a subregion of the entire volume. A fluctuation bound obtained by martingale methods produces, with the help of integration by parts technique, a family of polynomial identities involving overlaps and magnetizations

    Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors

    Full text link
    Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devices. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.Comment: Four pages, seven figures. Presented by Michele Caponero at IWASI 2015, Gallipoli (Italy

    Eco-friendly gas mixtures for Resistive Plate Chambers based on Tetrafluoropropene and Helium

    Full text link
    Due to the recent restrictions deriving from the application of the Kyoto protocol, the main components of the gas mixtures presently used in the Resistive Plate Chambers systems of the LHC experiments will be most probably phased out of production in the coming years. Identifying possible replacements with the adequate characteristics requires an intense R&D, which was recently started, also in collaborations across the various experiments. Possible candidates have been proposed and are thoroughly investigated. Some tests on one of the most promising candidate - HFO-1234ze, an allotropic form of tetrafluoropropane- have already been reported. Here an innovative approach, based on the use of Helium, to solve the problems related to the too elevate operating voltage of HFO-1234ze based gas mixtures, is discussed and the relative first results are shown.Comment: 9 pages, 6 figures, 1 tabl

    Thermodynamic Limit for Spin Glasses. Beyond the Annealed Bound

    Full text link
    Using a correlation inequality of Contucci and Lebowitz for spin glasses, we demonstrate existence of the thermodynamic limit for short-ranged spin glasses, under weaker hypotheses than previously available, namely without the assumption of the annealed bound.Comment: 8 page

    Efficacy and toxicity of bevacizumab in recurrent ovarian disease: an update meta-analysis on phase III trials

    Get PDF
    Background: To analyze the efficacy and toxicity of bevacizumab on survival outcomes in recurrent ovarian cancer. Results: Bevacizumab was associated with significant improvement of PFS and OS compared with standard treatment with HRs of 0.53 (95% CI 0.44 - 0.63; p < 0.00001) and 0.87 (95% CI, 0.77 to 0.99; p = 0.03), respectively. Bevacizumab increased the incidence of G3/G4 hypertension (RR 19.01, 95% CI 7.77 - 46.55; p < 0.00001), proteinuria (RR 17.31, 95% CI 5.42 - 55.25; p < 0.00001), arterial thromboembolic events (ATE) (RR 4.99, 95% CI 1.29 - 19.27; p = 0.02) and bleeding (RR 3.14, 95% CI 1.35 - 7.32; p = 0.008). Materials and Methods: Three randomized phase III trials representing 1502 patients were identified. Pooled hazard ratio (HR), odd ratio (OR), risk ratio (RR) with 95% confidence interval (CI) were calculated using fixed or random effects model. Conclusions: Adding bevacizumab to standard chemotherapy improved ORR, PFS and OS, and it had a higher, but manageable, incidence of toxicities graded 3 to 4

    Control of the TORA System through the IDA-PBC without Explicit Solution of Matching Equations

    Get PDF
    This paper presents the control of a translational oscillator with a rotational actuator (TORA) system, in full gravity, through the interconnection and damping assignment passivity-based control (IDA-PBC). The sought goal is to control the underactuated TORA system while reducing the complexity in solving the partial differential equations coming out from the so-called matching equations, which arise from the IDA-PBC. The performance of the designed controller is illustrated through numerical simulations

    16x125 Gb/s Quasi-Nyquist DAC-Generated PM-16QAM Transmission Over 3590 km of PSCF

    Get PDF
    We report on a transmission experiment over high-performance pure silica core fiber (PSCF) of 16 Nyquist wavelength-division-multiplexed (Nyquist-WDM) channels at a symbol rate of 15.625 GBaud, using polarization-multiplexed (PM) 16 symbols quadrature amplitude modulation (16QAM), resulting in a per-channel raw bit rate of 125 Gb/s. The channel spacing is 16 GHz, corresponding to 1.024 times the symbol rate. The interchannel crosstalk penalty is drastically reduced through the confinement of the signal spectrum within a near-Nyquist bandwidth, achieved with digital filtering and digital-to-analog converters (DACs) operating at 1.5 samples/symbol. The optical line is a recirculating loop composed of two spans of high-performance PSCF with erbium-doped fiber amplifiers only. The transmission distance of 3590 km at a target line bit-error rate (BER) of 1.5 10^-2 is achieved at a raw spectral efficiency (SE) of 7.81 b/s/Hz. Assuming a commercial hard forward error correction with 20.5% redundancy, capable of handling the target BER, the net SE is 6.48 b/s/Hz, the highest so far reported for multithousand kilometer transmission of PM-16QAM at ≥ 100 Gb/s per channel. These results demonstrate the feasibility of very high SE DAC-enabled ultra-long-haul quasi-Nyquist-WDM transmission using PM-16QAM with current technologies and manageable digital signal processing complexit

    A magnetar powering the ordinary monster GRB 130427A?

    Full text link
    We present the analysis of the extraordinarily bright Gamma-Ray Burst (GRB) 130427A under the hypothesis that the GRB central engine is an accretion-powered magnetar. In this framework, initially proposed to explain GRBs with precursor activity, the prompt emission is produced by accretion of matter onto a newly-born magnetar, and the observed power is related to the accretion rate. The emission is eventually halted if the centrifugal forces are able to pause accretion. We show that the X-ray and optical afterglow is well explained as the forward shock emission with a jet break plus a contribution from the spin-down of the magnetar. Our modelling does not require any contribution from the reverse shock, that may still influence the afterglow light curve at radio and mm frequencies, or in the optical at early times. We derive the magnetic field (B1016B\sim 10^{16} G) and the spin period (P20P\sim 20 ms) of the magnetar and obtain an independent estimate of the minimum luminosity for accretion. This minimum luminosity results well below the prompt emission luminosity of GRB 130427A, providing a strong consistency check for the scenario where the entire prompt emission is the result of continuous accretion onto the magnetar. This is in agreement with the relatively long spin period of the magnetar. GRB 130427A was a well monitored GRB showing a very standard behavior and, thus, is a well-suited benchmark to show that an accretion-powered magnetar gives a unique view of the properties of long GRBs.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter
    corecore