2,815 research outputs found

    Estimating Electric Fields from Vector Magnetogram Sequences

    Full text link
    Determining the electric field (E-field) distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This E-field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how Faraday's Law can be used with observed vector magnetogram time series to estimate the photospheric E-field, an ill-posed inversion problem. Our method uses a "poloidal-toroidal decomposition" (PTD) of the time derivative of the vector magnetic field. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD E-field without affecting consistency with Faraday's Law. We present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this E-field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique E-field, similar to Longcope's "Minimum Energy Fit". The PTD technique, the iterative technique, and the variational technique are used to estimate E-fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these E-fields are compared with the simulation's known electric fields. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data.Comment: 41 pages, 10 figure

    Quantum state engineering using conditional measurement on a beam splitter

    Full text link
    State preparation via conditional output measurement on a beam splitter is studied, assuming the signal mode is mixed with a mode prepared in a Fock state and photon numbers are measured in one of the output channels. It is shown that the mode in the other output channel is prepared in either a photon-subtracted or a photon-added Jacobi polynomial state, depending upon the difference between the number of photons in the input Fock state and the number of photons in the output Fock state onto which it is projected. The properties of the conditional output states are studied for coherent and squeezed input states, and the probabilities of generating the states are calculated. Relations to other states, such as near-photon-number states and squeezed-state-excitations, are given and proposals are made for generating them by combining the scheme with others. Finally, effects of realistic photocounting and Fock-state preparation are discussed.Comment: 8 figures using a4.st

    Continuous-variable quantum teleportation through lossy channels

    Full text link
    The ultimate limits of continuous-variable single-mode quantum teleportation due to absorption are studied, with special emphasis on (quasi-)monochromatic optical fields propagating through fibers. It is shown that even if an infinitely squeezed two-mode squeezed vacuum were used, the amount of information that would be transferred quantum mechanically over a finite distance is limited and effectively approaches to zero on a length scale that is much shorter than the (classical) absorption length. Only for short distances the state-dependent teleportation fidelity can be close to unity. To realize the largest possibly fidelity, an asymmetrical equipment must be used, where the source of the two-mode squeezed vacuum is nearer to Alice than to Bob and in consequence the coherent displacement performed by Bob cannot be chosen independently of the transmission lengths.Comment: 10 pages, 7 figures. Submitted to Phys. Rev.

    A Comprehensive Method of Estimating Electric Fields from Vector Magnetic Field and Doppler Measurements

    Full text link
    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the "{\bf P}TD-{\bf D}oppler-{\bf F}LCT {\bf I}deal" (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the \texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (\texttt{ANMHD}) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 11% error in the total Poynting flux and a 1010% error in the helicity flux rate at a normal viewing angle (θ=0(\theta=0) and less than 2525% and 1010% errors respectively at large viewing angles (θ<60\theta<60^\circ). We compare our results with other inversion methods at zero viewing angle, and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.Comment: 56 pages, 10 figures, ApJ (in press
    corecore