595 research outputs found
Marginal Pinning of Quenched Random Polymers
An elastic string embedded in 3D space and subject to a short-range
correlated random potential exhibits marginal pinning at high temperatures,
with the pinning length becoming exponentially sensitive to
temperature. Using a functional renormalization group (FRG) approach we find
, with the
depinning temperature. A slow decay of disorder correlations as it appears in
the problem of flux line pinning in superconductors modifies this result, .Comment: 4 pages, RevTeX, 1 figure inserte
Free-energy distribution functions for the randomly forced directed polymer
We study the -dimensional random directed polymer problem, i.e., an
elastic string subject to a Gaussian random potential and
confined within a plane. We mainly concentrate on the short-scale and
finite-temperature behavior of this problem described by a short- but
finite-ranged disorder correlator and introduce two types of
approximations amenable to exact solutions. Expanding the disorder potential
at short distances, we study the
random force (or Larkin) problem with as well as the shifted
random force problem including the random offset ; as such, these
models remain well defined at all scales. Alternatively, we analyze the
harmonic approximation to the correlator in a consistent manner.
Using direct averaging as well as the replica technique, we derive the
distribution functions and of free energies
of a polymer of length for both fixed () and free boundary
conditions on the displacement field and determine the mean
displacement correlators on the distance . The inconsistencies encountered
in the analysis of the harmonic approximation to the correlator are traced back
to its non-spectral correlator; we discuss how to implement this approximation
in a proper way and present a general criterion for physically admissible
disorder correlators .Comment: 16 pages, 5 figure
Thermally activated Hall creep of flux lines from a columnar defect
We analyse the thermally activated depinning of an elastic string (line
tension ) governed by Hall dynamics from a columnar defect modelled
as a cylindrical potential well of depth for the case of a small
external force An effective 1D field Hamiltonian is derived in order to
describe the 2D string motion. At high temperatures the decay rate is
proportional to with a constant of order of the
critical force and U(F) \sim{\left ({\epsilon V_{0}})}^{{1}/{2}}{V_{0}/{F}}
the activation energy. The results are applied to vortices pinned by columnar
defects in superclean superconductors.Comment: 12 pages, RevTeX, 2 figures inserte
Singularities of the renormalization group flow for random elastic manifolds
We consider the singularities of the zero temperature renormalization group
flow for random elastic manifolds. When starting from small scales, this flow
goes through two particular points and , where the average value
of the random squared potential turnes negative ($l^{*}$) and where
the fourth derivative of the potential correlator becomes infinite at the
origin ($l_{c}$). The latter point sets the scale where simple perturbation
theory breaks down as a consequence of the competition between many metastable
states. We show that under physically well defined circumstances $l_{c} to negative values does not
take place.Comment: RevTeX, 3 page
A condition for first order phase transitions in quantum mechanical tunneling models
A criterion is derived for the determination of parameter domains of first
order phase transitions in quantum mechanical tunneling models. The criterion
is tested by application to various models, in particular to some which have
been used recently to explore spin tunneling in macroscopic particles. In each
case agreement is found with previously heuristically determined domains.Comment: 13 pages, 5 figure
Metastability of (d+n)-dimensional elastic manifolds
We investigate the depinning of a massive elastic manifold with internal
dimensions, embedded in a -dimensional space, and subject to an
isotropic pinning potential The tunneling process is
driven by a small external force We find the zero temperature and
high temperature instantons and show that for the case the
problem exhibits a sharp transition from quantum to classical behavior: At low
temperatures the Euclidean action is constant up to exponentially
small corrections, while for The results are universal and do not depend on the detailed shape
of the trapping potential . Possible applications of the problem to
the depinning of vortices in high- superconductors and nucleation in
-dimensional phase transitions are discussed. In addition, we determine the
high-temperature asymptotics of the preexponential factor for the
-dimensional problem.Comment: RevTeX, 10 pages, 3 figures inserte
Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models
The periodic bounce configurations responsible for quantum tunneling are
obtained explicitly and are extended to the finite energy case for
minisuperspace models of the Universe. As a common feature of the tunneling
models at finite energy considered here we observe that the period of the
bounce increases with energy monotonically. The periodic bounces do not have
bifurcations and make no contribution to the nucleation rate except the one
with zero energy. The sharp first order phase transition from quantum tunneling
to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include
- …
