1,641 research outputs found

    Analisis Kinerja Keuangan Bank Bpr Konvensional di Indonesia Periode 2009 Sampai 2012

    Full text link
    Tujuan dari penelitian ini adalah untuk membuktikan pengaruh rasio keuanganCapital Adequacy Ratio (CAR), Biaya Operasi dibanding Pendapatan Operasi(BOPO), Non Performing Loan (NPL) dan Loan to Deposit Ratio (LDR) terhadapkinerja bank yang diukur dengan Return On Asset (ROA) serta variabel-variabelmanakah yang paling dominan berpengaruh terhadap Return On Asset (ROA).byek penelitian adalah bank-bank BPR konvensional yang beroperasi di 33 Provinsidi Indonesia pada rentang tahun 2009-2012. Teknik penentuan sampling adalahsampling jenuh atau sensus yaitu dimana semua anggota populasi digunakansebagai sampel yang berarti sampel yang digunakan sama dengan populasi.Sumber data dari publikasi pada website resmi Bank Indonesia, Teknik analisisyang digunakan yaitu analisis regresi berganda. Dari hasil uji F didapat nilai F hitungsebesar 22.432 dengan nilai P value, sig. sebesar 0,000. Hal ini berarti nilai P valuekurang dari 0,05 yang menunjukkan bahwa variabel Capital Adequacy Ratio (CAR),Biaya Operasi dibanding Pendapatan Operasi (BOPO), Non Performing Loan (NPL)dan Loan to Deposit Ratio (LDR) secara bersama-sama berpengaruh terhadapReturn On Asset (ROA). Berdasarkan hasil uji t disimpulkan bahwa Loan to DepositRatio (LDR), Biaya Operasi dibanding Pendapatan Operasi (BOPO) berpengaruhsecara parsial terhadap Return On Asset (ROA) sedangkan Capital Adequacy Ratio(CAR) dan Non Performing Loan (NPL) tidak berpengaruh secara parsial

    Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup

    Full text link
    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum projection noise limited performance of a Ramsey type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effects in an atom laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.

    A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer

    Full text link
    This paper presents the first realisation of a simultaneous 87^{87}Rb -85^{85}Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number of ambitious proposals for precise terrestrial and space based tests of the Weak Equivalence Principle rely on such a system. This implementation utilises hybrid magnetic-optical trapping to produce spatially overlapped condensates with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg beamsplitters and mirrors is used to simultaneously address both isotopes in the interferometer. We observe a non-linear phase shift on a non-interacting 85^{85}Rb interferometer as a function of interferometer time, TT, which we show arises from inter-isotope scattering with the co-incident 87^{87}Rb interferometer. A discussion of implications for future experiments is given.Comment: 7 pages, 5 figures. The authors welcome comments and feedback on this manuscrip

    Cold atom gravimetry with a Bose-Einstein Condensate

    Full text link
    We present a cold atom gravimeter operating with a sample of Bose-condensed Rubidium-87 atoms. Using a Mach-Zehnder configuration with the two arms separated by a two-photon Bragg transition, we observe interference fringes with a visibility of 83% at T=3 ms. We exploit large momentum transfer (LMT) beam splitting to increase the enclosed space-time area of the interferometer using higher-order Bragg transitions and Bloch oscillations. We also compare fringes from condensed and thermal sources, and observe a reduced visibility of 58% for the thermal source. We suspect the loss in visibility is caused partly by wavefront aberrations, to which the thermal source is more susceptible due to its larger transverse momentum spread. Finally, we discuss briefly the potential advantages of using a coherent atomic source for LMT, and present a simple mean-field model to demonstrate that with currently available experimental parameters, interaction-induced dephasing will not limit the sensitivity of inertial measurements using freely-falling, coherent atomic sources.Comment: 6 pages, 4 figures. Final version, published PR

    A Bright Solitonic Matter-Wave Interferometer

    Full text link
    We present the first realisation of a solitonic atom interferometer. A Bose-Einstein condensate of 1×1041\times10^4 atoms of rubidium-85 is loaded into a horizontal optical waveguide. Through the use of a Feshbach resonance, the ss-wave scattering length of the 85^{85}Rb atoms is tuned to a small negative value. This attractive atomic interaction then balances the inherent matter-wave dispersion, creating a bright solitonic matter wave. A Mach-Zehnder interferometer is constructed by driving Bragg transitions with the use of an optical lattice co-linear with the waveguide. Matter wave propagation and interferometric fringe visibility are compared across a range of ss-wave scattering values including repulsive, attractive and non-interacting values. The solitonic matter wave is found to significantly increase fringe visibility even compared with a non-interacting cloud.Comment: 6 pages, 4 figure

    Rb-85 tunable-interaction Bose-Einstein condensate machine

    Full text link
    We describe our experimental setup for creating stable Bose-Einstein condensates of Rb-85 with tunable interparticle interactions. We use sympathetic cooling with Rb-87 in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume crossed optical dipole trap, using the 155 G Feshbach resonance to manipulate the elastic and inelastic scattering properties of the Rb-85 atoms. Typical Rb-85 condensates contain 4 x 10^4 atoms with a scattering length of a=+200a_0. Our minimalist apparatus is well-suited to experiments on dual-species and spinor Rb condensates, and has several simplifications over the Rb-85 BEC machine at JILA (Papp, 2007; Papp and Wieman, 2006), which we discuss at the end of this article.Comment: 10 pages, 8 figure

    Medium-term exposure of the North Atlantic copepod Calanus finmarchicus (Gunnerus, 1770) to CO2-acidified seawater: effects on survival and development

    Get PDF
    The impact of medium-term exposure to CO2-acidified seawater on survival, growth and development was investigated in the North Atlantic copepod Calanus finmarchicus. Using a custom developed experimental system, fertilized eggs and subsequent development stages were exposed to normal seawater (390 ppm CO2) or one of three different levels of CO2-induced acidification (3300, 7300, 9700 ppm CO2). Following the 28-day exposure period, survival was found to be unaffected by exposure to 3300 ppm CO2, but significantly reduced at 7300 and 9700 ppm CO2. Also, the proportion of copepodite stages IV to VI observed in the different treatments was significantly affected in a manner that may indicate a CO2-induced retardation of the rate of ontogenetic development. Morphometric analysis revealed a significant increase in size (prosome length) and lipid storage volume in stage IV copepodites exposed to 3300 ppm CO2 and reduced size in stage III copepodites exposed to 7300 ppm CO2. Together, the findings indicate that a pCO2 level ≤2000 ppm (the highest CO2 level expected by the year 2300) will probably not directly affect survival in C. finmarchicus. Longer term experiments at more moderate CO2 levels are, however, necessary before the possibility that growth and development may be affected below 2000 ppm CO2 can be ruled out.© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License

    Bosenova and three-body loss in a Rb-85 Bose-Einstein condensate

    Full text link
    Collapsing Bose-Einstein condensates are rich and complex quantum systems for which quantitative explanation by simple models has proved elusive. We present new experimental data on the collapse of high density Rb-85 condensates with attractive interactions and find quantitative agreement with the predictions of the Gross-Pitaevskii equation. The collapse data and measurements of the decay of atoms from our condensates allow us to put new limits on the value of the Rb-85 three-body loss coefficient K_3 at small positive and negative scattering lengths.Comment: 6 pages, 5 figure

    11 W narrow linewidth laser source at 780nm for laser cooling and manipulation of Rubidium

    Full text link
    We present a narrow linewidth continuous laser source with over 11 Watts of output power at 780nm, based on single-pass frequency doubling of an amplified 1560nm fibre laser with 36% efficiency. This source offers a combination of high power, simplicity, mode quality and stability. Without any active stabilization, the linewidth is measured to be below 10kHz. The fibre seed is tunable over 60GHz, which allows access to the D2 transitions in 87Rb and 85Rb, providing a viable high-power source for laser cooling as well as for large-momentum-transfer beamsplitters in atom interferometry. Sources of this type will pave the way for a new generation of high flux, high duty-cycle degenerate quantum gas experiments.Comment: 5 pages, 3 figure
    corecore