316 research outputs found
Learning Cooperative Games
This paper explores a PAC (probably approximately correct) learning model in
cooperative games. Specifically, we are given random samples of coalitions
and their values, taken from some unknown cooperative game; can we predict the
values of unseen coalitions? We study the PAC learnability of several
well-known classes of cooperative games, such as network flow games, threshold
task games, and induced subgraph games. We also establish a novel connection
between PAC learnability and core stability: for games that are efficiently
learnable, it is possible to find payoff divisions that are likely to be stable
using a polynomial number of samples.Comment: accepted to IJCAI 201
Robustness of Transcriptional Regulation in Yeast-like Model Boolean Networks
We investigate the dynamical properties of the transcriptional regulation of
gene expression in the yeast Saccharomyces Cerevisiae within the framework of a
synchronously and deterministically updated Boolean network model. By means of
a dynamically determinant subnetwork, we explore the robustness of
transcriptional regulation as a function of the type of Boolean functions used
in the model that mimic the influence of regulating agents on the transcription
level of a gene. We compare the results obtained for the actual yeast network
with those from two different model networks, one with similar in-degree
distribution as the yeast and random otherwise, and another due to Balcan et
al., where the global topology of the yeast network is reproduced faithfully.
We, surprisingly, find that the first set of model networks better reproduce
the results found with the actual yeast network, even though the Balcan et al.
model networks are structurally more similar to that of yeast.Comment: 7 pages, 4 figures, To appear in Int. J. Bifurcation and Chaos, typos
were corrected and 2 references were adde
Video Pandemics: Worldwide Viral Spreading of Psy's Gangnam Style Video
Viral videos can reach global penetration traveling through international
channels of communication similarly to real diseases starting from a
well-localized source. In past centuries, disease fronts propagated in a
concentric spatial fashion from the the source of the outbreak via the short
range human contact network. The emergence of long-distance air-travel changed
these ancient patterns. However, recently, Brockmann and Helbing have shown
that concentric propagation waves can be reinstated if propagation time and
distance is measured in the flight-time and travel volume weighted underlying
air-travel network. Here, we adopt this method for the analysis of viral meme
propagation in Twitter messages, and define a similar weighted network distance
in the communication network connecting countries and states of the World. We
recover a wave-like behavior on average and assess the randomizing effect of
non-locality of spreading. We show that similar result can be recovered from
Google Trends data as well.Comment: 10 page
Learning with a Drifting Target Concept
We study the problem of learning in the presence of a drifting target
concept. Specifically, we provide bounds on the error rate at a given time,
given a learner with access to a history of independent samples labeled
according to a target concept that can change on each round. One of our main
contributions is a refinement of the best previous results for polynomial-time
algorithms for the space of linear separators under a uniform distribution. We
also provide general results for an algorithm capable of adapting to a variable
rate of drift of the target concept. Some of the results also describe an
active learning variant of this setting, and provide bounds on the number of
queries for the labels of points in the sequence sufficient to obtain the
stated bounds on the error rates
Multiscale mobility networks and the large scale spreading of infectious diseases
Among the realistic ingredients to be considered in the computational
modeling of infectious diseases, human mobility represents a crucial challenge
both on the theoretical side and in view of the limited availability of
empirical data. In order to study the interplay between small-scale commuting
flows and long-range airline traffic in shaping the spatio-temporal pattern of
a global epidemic we i) analyze mobility data from 29 countries around the
world and find a gravity model able to provide a global description of
commuting patterns up to 300 kms; ii) integrate in a worldwide structured
metapopulation epidemic model a time-scale separation technique for evaluating
the force of infection due to multiscale mobility processes in the disease
dynamics. Commuting flows are found, on average, to be one order of magnitude
larger than airline flows. However, their introduction into the worldwide model
shows that the large scale pattern of the simulated epidemic exhibits only
small variations with respect to the baseline case where only airline traffic
is considered. The presence of short range mobility increases however the
synchronization of subpopulations in close proximity and affects the epidemic
behavior at the periphery of the airline transportation infrastructure. The
present approach outlines the possibility for the definition of layered
computational approaches where different modeling assumptions and granularities
can be used consistently in a unifying multi-scale framework.Comment: 10 pages, 4 figures, 1 tabl
Phase transitions in contagion processes mediated by recurrent mobility patterns
Human mobility and activity patterns mediate contagion on many levels,
including the spatial spread of infectious diseases, diffusion of rumors, and
emergence of consensus. These patterns however are often dominated by specific
locations and recurrent flows and poorly modeled by the random diffusive
dynamics generally used to study them. Here we develop a theoretical framework
to analyze contagion within a network of locations where individuals recall
their geographic origins. We find a phase transition between a regime in which
the contagion affects a large fraction of the system and one in which only a
small fraction is affected. This transition cannot be uncovered by continuous
deterministic models due to the stochastic features of the contagion process
and defines an invasion threshold that depends on mobility parameters,
providing guidance for controlling contagion spread by constraining mobility
processes. We recover the threshold behavior by analyzing diffusion processes
mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary
Information; Nature Physics (2011
Analytical Solution of a Stochastic Content Based Network Model
We define and completely solve a content-based directed network whose nodes
consist of random words and an adjacency rule involving perfect or approximate
matches, for an alphabet with an arbitrary number of letters. The analytic
expression for the out-degree distribution shows a crossover from a leading
power law behavior to a log-periodic regime bounded by a different power law
decay. The leading exponents in the two regions have a weak dependence on the
mean word length, and an even weaker dependence on the alphabet size. The
in-degree distribution, on the other hand, is much narrower and does not show
scaling behavior. The results might be of interest for understanding the
emergence of genomic interaction networks, which rely, to a large extent, on
mechanisms based on sequence matching, and exhibit similar global features to
those found here.Comment: 13 pages, 5 figures. Rewrote conclusions regarding the relevance to
gene regulation networks, fixed minor errors and replaced fig. 4. Main body
of paper (model and calculations) remains unchanged. Submitted for
publicatio
Dynamical real-space renormalization group calculations with a new clustering scheme on random networks
We have defined a new type of clustering scheme preserving the connectivity
of the nodes in network ignored by the conventional Migdal-Kadanoff bond moving
process. Our new clustering scheme performs much better for correlation length
and dynamical critical exponents in high dimensions, where the conventional
Migdal-Kadanoff bond moving scheme breaks down. In two and three dimensions we
find the dynamical critical exponents for the kinetic Ising Model to be z=2.13
and z=2.09, respectively at pure Ising fixed point. These values are in very
good agreement with recent Monte Carlo results. We investigate the phase
diagram and the critical behaviour for randomly bond diluted lattices in d=2
and 3, in the light of this new transformation. We also provide exact
correlation exponent and dynamical critical exponent values on hierarchical
lattices with power-law degree distributions, both in the pure and random
cases.Comment: 8 figure
- …
