1,792 research outputs found
Compressive and shear behaviour of masonry panels: experimentation and numerical analysis
The compressive and shear behavior of masonry is here studied both experimental- ly and numerically. An experimental campaign has been carried out on 9 square-shaped one leaf masonry panels, reproducing historical masonry. Tests have been done for evaluating the elastic and shear moduli in both plane directions, with 6 panels rotated by 90 degrees, lead- ing to vertically aligned bed joints, and 3 panels maintained with horizontal bed joints. Com- pressive tests were executed on 6 masonry panels, 3 of them rotated by 90 degrees. Initial shear strength and shear modulus parallel to bed joints are evaluated through shear tests on 9 masonry triplets. Shear tests are performed on 3 rotated panels, applying an horizontal dis- tributed load, without vertical compression. Attention is paid to the service load state: only the initial phase of the tests is studied. Numerical models are proposed for representing actu- al masonry behavior, both discrete [1] and continuous [2,3], standard and micropolar, ob- tained by homogenization procedures [4]. Several numerical analyses are performed for simulating the experimental tests on masonry triplets and panels. The mechanical elastic pa- rameters of both discrete and continuous models are calibrated starting from laboratory data of masonry constituents and then by fitting the results of the initial phases of the experimental tests on masonry specimens
Uncertainties in risk assessment of hydrogen discharges from pressurized storage vessels at low temperatures
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the various hydrogen storage types are important to support risk informed safety management. The tools have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This paper compares a number of EOS to predict hydrogen properties typical in different storage types. The vessel dynamics are modeled to evaluate the performance of various EOS to predict exit pressures and temperatures. The results are compared to experimental data and results from CFD calculations.JRC.F.2-Cleaner energ
Electron-phonon coupling in potassium-doped graphene: Angle-resolved photoemission spectroscopy
The electron-phonon coupling in potassium-doped graphene on Ir(111) is
studied via the renormalization of the pi* band near the Fermi level, using
angle-resolved photoemission spectroscopy. The renormalization is found to be
fairly weak and almost isotropic, with a mass enhancement parameter of lambda=
0.28(6) for both the K-M and the K-G direction. These results are found to
agree well with recent first principles calculations.Comment: 5 pages, 3 figure
Growth of Dome-Shaped Carbon Nanoislands on Ir(111): The Intermediate between Carbidic Clusters and Quasi-Free-Standing Graphene (vol 103, 166101, 2009)
Antimicrobial activity of an iron triple helicate
The prevalence of antibiotic resistance has resulted in the need for new approaches to be developed to combat previously easily treatable infections. Here we investigated the potential of the synthetic metallomolecules [Fe2L3]4+ and [Cu2(L’)2]2+ as antibacterial agents. Both molecules have been shown to bind DNA; [Fe2L3]4+ binds in the major groove and causes DNA coiling, whilst [Cu2(L’)2]2+ can act as an artificial nuclease. The work described here shows that only [Fe2L3]4+ is bactericidal for Bacillus subtilis and Escherichia coli. We demonstrate that [Fe2L3]4+ binds bacterial DNA in vivo and, strikingly, that it kills B. subtilis cells very rapidly
Surface Core Level Shifts of Clean and Oxygen Covered Ru(0001)
We have performed high resolution XPS experiments of the Ru(0001) surface,
both clean and covered with well-defined amounts of oxygen up to 1 ML coverage.
For the clean surface we detected two distinct components in the Ru 3d_{5/2}
core level spectra, for which a definite assignment was made using the high
resolution Angle-Scan Photoelectron Diffraction approach. For the p(2x2),
p(2x1), (2x2)-3O and (1x1)-O oxygen structures we found Ru 3d_{5/2} core level
peaks which are shifted up to 1 eV to higher binding energies. Very good
agreement with density functional theory calculations of these Surface Core
Level Shifts (SCLS) is reported. The overriding parameter for the resulting Ru
SCLSs turns out to be the number of directly coordinated O atoms. Since the
calculations permit the separation of initial and final state effects, our
results give valuable information for the understanding of bonding and
screening at the surface, otherwise not accessible in the measurement of the
core level energies alone.Comment: 16 pages including 10 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
HySafe Standard benchmark Problem SBEP-V11: Predictions of hydrogen release and dispersion from a CGH2 bus in an underpass
One of the tasks of the HySafe Network of Excellence was the evaluation of available CFD tools and models for dispersion and combustion in selected hydrogen release scenarios identified as “standard benchmark problems” (SBEPs). This paper presents the results of the HySafe standard benchmark problem SBEP-V11. The situation considered is a high pressure hydrogen jet release from a compressed gaseous hydrogen (CGH2) bus in an underpass. The bus considered is equipped with 8 cylinders of 5 kg hydrogen each at 35 MPa storage pressure. The underpass is assumed to be of the common beam and slab type construction with I-beams spanning across the highway at 3 m centres (normal to the bus), plus cross bracing between the main beams, and light armatures parallel to the bus direction. The main goal of the present work was to evaluate the role of obstructions on the underside of the bridge deck on the dispersion patterns and assess the potential for hydrogen accumulation. Four HySafe partners participated in this benchmark, with 4 different CFD codes, ADREA-HF, CFX, FLACS and FLUENT. Four scenarios were examined in total. In the base case scenario 20 kg of hydrogen was released in the basic geometry. In Sensitivity Test 1 the release position was moved so that the hydrogen jet could hit directly the light armature on the roof of the underpass. In Sensitivity Test 2 the underside of the bridge deck was flat. In Sensitivity Test 3 the release was from one cylinder instead of four (5 kg instead of 20). The paper compares the results predicted by the four different computational approaches and attempts to identify the reasons for observed disagreements. The paper also concludes on the effects of the obstructions on the underside of the bridge deck
Thermal Stability of Corrugated Epitaxial Graphene Grown on Re(0001)
We report on a novel approach to determine the relationship between the corrugation and the thermal stability of epitaxial graphene grown on a strongly interacting substrate. According to our density functional theory calculations, the C single layer grown on Re(0001) is strongly corrugated, with a buckling of 1.6 angstrom, yielding a simulated C 1s core level spectrum which is in excellent agreement with the experimental one. We found that corrugation is closely knit with the thermal stability of the C network: C-C bond breaking is favored in the strongly buckled regions of the moire cell, though it requires the presence of diffusing graphene layer vacancies
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
Intercultural ethics: questions of methods in language and intercultural communication
This paper explores how questions of ethics and questions of method are intertwined and unavoidable in any serious study of language and intercultural communication. It argues that the focus on difference and solution orientations to intercultural conflict has been a fundamental driver for theory, data collection and methods in the field. These approaches, the paper argues, have created a considerable consciousness raising industry, with methods, trainings and ‘critical incidents’, which ultimately focus intellectual energy in areas which may be productive in terms of courses and publications but which have a problematic basis in their ethical terrain.
Dieser Artikel untersucht wie ethische und methodische Fragen nicht nur ineinander greifen, sondern in keiner ernstzunehmenden Studie ueber Sprache und interkulturelle Kommunikation ausgelassen werden duerfen. Es wird hier argumentiert, dass der Schwerpunkt auf Verschiedenheit und Problemorientierung im interkulturellen Konflikt einen wesentlichen Einfluss auf theoretische Entwicklungen, Datenerhebung und Methoden in diesem Bereich hatte. Dieser Artikel legt auch dar, wie diese Ansaetze eine betraechtliche ‘Bewusstseinsbildungs – Branche' erzeugt haben, mit Methoden, Trainings, und ‘kritischen Interaktionssituationen’, welche letztendlich allen intellektuellen Arbeitseifer auf Bereiche konzentriert hat, die zwar ertragreich sind in Bezug auf Kurse und Publikationen, jedoch eine problematische Grundlage im ethischen Bereich aufweisen
- …
