46,402 research outputs found

    Flying qualities criteria for superaugmented aircraft

    Get PDF
    An overview of Dryden superaugmented aircraft flying qualities research is presented. This includes F-8 digital fly by wire flight experiments, orbiter flying qualities, shuttle improvements, AFTI/F-16, flying qualities and control system alternatives, Vertical Motion Simulator Shuttle evaluation and Total in Flight Simulator pitch rate criteria

    Linear-optical processing cannot increase photon efficiency

    Full text link
    We answer the question whether linear-optical processing of the states produced by one or multiple imperfect single-photon sources can improve the single-photon fidelity. This processing can include arbitrary interferometers, coherent states, feedforward, and conditioning on results of detections. We show that without introducing multiphoton components, the single-photon fraction in any of the single-mode states resulting from such processing cannot be made to exceed the efficiency of the best available photon source. If multiphoton components are allowed, the single-photon fidelity cannot be increased beyond 1/2. We propose a natural general definition of the quantum-optical state efficiency, and show that it cannot increase under linear-optical processing.Comment: 4 pages, 3 figure

    Adaptive Quantum Measurements of a Continuously Varying Phase

    Get PDF
    We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous beam (rather than a pulse) of the electromagnetic field. We consider both non-adaptive and adaptive measurements, and both dyne detection (using a local oscillator) and interferometric detection. We take the phase variation to be \dot\phi = \sqrt{\kappa}\xi(t), where \xi(t) is \delta-correlated Gaussian noise. For a beam of power P, the important dimensionless parameter is N=P/\hbar\omega\kappa, the number of photons per coherence time. For the case of dyne detection, both continuous-wave (cw) coherent beams and cw (broadband) squeezed beams are considered. For a coherent beam a simple feedback scheme gives good results, with a phase variance \simeq N^{-1/2}/2. This is \sqrt{2} times smaller than that achievable by nonadaptive (heterodyne) detection. For a squeezed beam a more accurate feedback scheme gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne detection. For the case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme is identified, and it is shown to give a variance scaling as N^{-1/2}. It offers a significant improvement over nonadaptive interferometry only for N of order unity.Comment: 11 pages, 6 figures, journal versio

    Validation of a new flying quality criterion for the landing task

    Get PDF
    A strong correlation has been found to exist between flight path angle peak overshoot and pilot ratings for the landing task. The use of flightpath overshoot as a flying quality metric for landing is validated by correlation with four different in-flight simulation programs and a ground simulation study. Configurations tested were primarily medium-weight generic transports. As a result of good correlation with this extensive data base, criterion boundaries are proposed for landing based on the flight path peak overshoot metric

    Correlation of AH-1G airframe test data with a NASTRAN mathematical model

    Get PDF
    Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe
    corecore