24,842 research outputs found
Data Informed Platform for Health Feasibility Study Report, Amhara and Oromia Regions, Ethiopia
IDEAS has published a report on the feasibility of implementing the Data Informed Platform for Health in Amhara and Oromia Regions, Ethiopia. The Data Informed Platform for Health is a framework to guide coordination, bringing together key data from public and private health sectors on inputs and processes that could influence maternal and newborn health. The key data will be synthesised to create a measure of programme implementation strength for each local area, which in turn can be used in the evaluation of the effects of large-scale programmes on health outcomes
Recommended from our members
Portable Perimetry Using Eye-Tracking on a Tablet Computer—A Feasibility Assessment
Purpose: Visual field (VF) examination by standard automated perimetry (SAP) is an important method of clinical assessment. However, the complexity of the test, and its use of bulky, expensive equipment makes it impractical for case-finding. We propose and evaluate a new approach to paracentral VF assessment that combines an inexpensive eye-tracker with a portable tablet computer (“Eyecatcher”).
Methods: Twenty-four eyes from 12 glaucoma patients, and 12 eyes from six age-similar controls were examined. Participants were tested monocularly (once per eye), with both the novel Eyecatcher test and traditional SAP (HFA SITA standard 24-2). For Eyecatcher, the participant's task was to simply to look at a sequence of fixed-luminance dots, presented relative to the current point of fixation. Start and end fixations were used to determine locations where stimuli were seen/unseen, and to build a continuous map of sensitivity loss across a VF of approximately 20°.
Results: Eyecatcher was able to clearly separate patients from controls, and the results were consistent with those from traditional SAP. In particular, mean Eyecatcher scores were strongly correlated with mean deviation scores (r2 = 0.64, P < 0.001), and there was good concordance between corresponding VF locations (∼84%). Participants reported that Eyecatcher was more enjoyable, easier to perform, and less tiring than SAP (all P < 0.001).
Conclusions: Portable perimetry using an inexpensive eye-tracker and a tablet computer is feasible, although possible means of improvement are suggested.
Translational Relevance: Such a test could have significant utility as a case finding device
Improved transient simulation of salient-pole synchronous generators with internal and ground faults in the stator winding
An improved model for simulating the transient behavior of salient-pole synchronous generators with internal and ground faults in the stator winding is established using the multi-loop circuit method. The model caters for faults under different ground conditions for the neutral, and accounts for the distributed capacitances of the windings to ground. Predictions from the model are validated by experiments, and it is shown that the model accurately predicts the voltage and current waveforms under fault conditions. Hence, it can be used to analyze important features of faults and to design appropriate protection schemes
Evolutionary Subnetworks in Complex Systems
Links in a practical network may have different functions, which makes the
original network a combination of some functional subnetworks. Here, by a model
of coupled oscillators, we investigate how such functional subnetworks are
evolved and developed according to the network structure and dynamics. In
particular, we study the case of evolutionary clustered networks in which the
function of each link (either attractive or repulsive coupling) is updated by
the local dynamics. It is found that, during the process of system evolution,
the network is gradually stabilized into a particular form in which the
attractive (repulsive) subnetwork consists only the intralinks (interlinks).
Based on the properties of subnetwork evolution, we also propose a new
algorithm for network partition which is distinguished by the convenient
operation and fast computing speed.Comment: 4 pages, 4 figure
Recommended from our members
Refinement and preliminary evaluation of two tablet-based tests of real-world visual function
PURPOSE: To describe, refine, evaluate, and provide normative control data for two freely available tablet-based tests of real-world visual function, using a cohort of young, normally-sighted adults.
METHODS: Fifty young (18-40 years), normally-sighted adults completed tablet-based assessments of (1) face discrimination and (2) visual search. Each test was performed twice, to assess test-retest repeatability. Post-hoc analyses were performed to determine the number of trials required to obtain stable estimates of performance. Distributions were fitted to the normative data to determine the 99% population-boundary for normally sighted observers. Participants were also asked to rate their comprehension of each test.
RESULTS: Both tests provided stable estimates in around 20 trials (~1-4 min), with only a further reduction of 14%-17% in the 95% Coefficient of Repeatability (CoR95 ) when an additional 40 trials were included. When using only ~20 trials: median durations for the first run of each test were 191 s (Faces) and 51 s (Search); test-retest CoR95 were 0.27 d (Faces) and 0.84 s (Search); and normative 99% population-limits were 3.50 d (Faces) and 3.1 s (Search). No participants exhibited any difficulties completing either test (100% completion rate), and ratings of task-understanding were high (Faces: 9.6 out of 10; Search: 9.7 out of 10).
CONCLUSIONS: This preliminary assessment indicated that both tablet-based tests are able to provide simple, quick, and easy-to-administer measures of real-world visual function in normally-sighted young adults. Further work is required to assess their accuracy and utility in older people and individuals with visual impairment. Potential applications are discussed, including their use in clinic waiting rooms, and as an objective complement to Patient Reported Outcome Measures (PROMs)
Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins
During division it is of primary importance for a cell to correctly determine
the site of cleavage. The bacterium Escherichia coli divides in the center,
producing two daughter cells of equal size. Selection of the center as the
correct division site is in part achieved by the Min-proteins. They oscillate
between the two cell poles and thereby prevent division at these locations.
Here, a phenomenological description for these oscillations is presented, where
lateral interactions between proteins on the cell membrane play a key role.
Solutions to the dynamic equations are compared to experimental findings. In
particular, the temporal period of the oscillations is measured as a function
of the cell length and found to be compatible with the theoretical prediction.Comment: 17 pages, 5 figures. Submitted to Physical Biolog
Large-Scale Structure Shocks at Low and High Redshifts
Cosmological simulations show that, at the present time, a substantial
fraction of the gas in the intergalactic medium (IGM) has been shock-heated to
T>10^5 K. Here we develop an analytic model to describe the fraction of
shocked, moderately overdense gas in the IGM. The model is an extension of the
Press & Schechter (1974) description for the mass function of halos: we assume
that large-scale structure shocks occur at a fixed overdensity during nonlinear
collapse. This in turn allows us to compute the fraction of gas at a given
redshift that has been shock-heated to a specified temperature. We show that,
if strong shocks occur at turnaround, our model provides a reasonable
description of the temperature distribution seen in cosmological simulations at
z~0, although it does overestimate the importance of weak shocks. We then apply
our model to shocks at high redshifts. We show that, before reionization, the
thermal energy of the IGM is dominated by large-scale structure shocks (rather
than virialized objects). These shocks can have a variety of effects, including
stripping ~10% of the gas from dark matter minihalos, accelerating cosmic rays,
and creating a diffuse radiation background from inverse Compton and cooling
radiation. This radiation background develops before the first stars form and
could have measurable effects on molecular hydrogen formation and the spin
temperature of the 21 cm transition of neutral hydrogen. Finally, we show that
shock-heating will also be directly detectable by redshifted 21 cm measurements
of the neutral IGM in the young universe.Comment: 12 pages, 8 figures, submitted to Ap
- …
