4,834 research outputs found

    LUNASKA simultaneous neutrino searches with multiple telescopes

    Full text link
    The most sensitive method for detecting neutrinos at the very highest energies is the lunar Cherenkov technique, which employs the Moon as a target volume, using conventional radio telescopes to monitor it for nanosecond-scale pulses of Cherenkov radiation from particle cascades in its regolith. Multiple-antenna radio telescopes are difficult to effectively combine into a single detector for this purpose, while single antennas are more susceptible to false events from radio interference, which must be reliably excluded for a credible detection to be made. We describe our progress in excluding such interference in our observations with the single-antenna Parkes radio telescope, and our most recent experiment (taking place the week before the ICRC) using it in conjunction with the Australia Telescope Compact Array, exploiting the advantages of both types of telescope.Comment: 4 pages, 4 figures, in Proceedings of the 32nd International Cosmic Ray Conference (Beijing 2011

    Adaptation Reduces Variability of the Neuronal Population Code

    Full text link
    Sequences of events in noise-driven excitable systems with slow variables often show serial correlations among their intervals of events. Here, we employ a master equation for general non-renewal processes to calculate the interval and count statistics of superimposed processes governed by a slow adaptation variable. For an ensemble of spike-frequency adapting neurons this results in the regularization of the population activity and an enhanced post-synaptic signal decoding. We confirm our theoretical results in a population of cortical neurons.Comment: 4 pages, 2 figure

    Phase field modeling of electrochemistry II: Kinetics

    Full text link
    The kinetic behavior of a phase field model of electrochemistry is explored for advancing (electrodeposition) and receding (electrodissolution) conditions in one dimension. We described the equilibrium behavior of this model in [J. E. Guyer, W. J. Boettinger, J.A. Warren, and G. B. McFadden, ``Phase field modeling of electrochemistry I: Equilibrium'', cond-mat/0308173]. We examine the relationship between the parameters of the phase field method and the more typical parameters of electrochemistry. We demonstrate ohmic conduction in the electrode and ionic conduction in the electrolyte. We find that, despite making simple, linear dynamic postulates, we obtain the nonlinear relationship between current and overpotential predicted by the classical ``Butler-Volmer'' equation and observed in electrochemical experiments. The charge distribution in the interfacial double layer changes with the passage of current and, at sufficiently high currents, we find that the diffusion limited deposition of a more noble cation leads to alloy deposition with less noble species.Comment: v3: To be published in Phys. Rev. E v2: Attempt to work around turnpage bug. Replaced color Fig. 4a with grayscale 13 pages, 7 figures in 10 files, REVTeX 4, SIunits.sty, follows cond-mat/030817

    Holographic Non-Gaussianity

    Full text link
    We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f_nl^eq=5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work.Comment: 42 pages, 2 figs, published versio

    LUNASKA experiments using the Australia Telescope Compact Array to search for ultra-high energy neutrinos and develop technology for the lunar Cherenkov technique

    Full text link
    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our "Lunar UHE Neutrino Astrophysics using the Square Kilometer Array" (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultra-high energy (UHE) cosmic ray (CR) and neutrino detection, and in particular to prepare for using the Square Kilometer Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.Comment: 27 pages, 18 figures, 4 tables

    Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 parsecs: The Northern Sample I

    Full text link
    We have embarked on a project, under the aegis of the Nearby Stars (NStars)/ Space Interferometry Mission Preparatory Science Program to obtain spectra, spectral types, and, where feasible, basic physical parameters for the 3600 dwarf and giant stars earlier than M0 within 40 parsecs of the sun. In this paper we report on the results of this project for the first 664 stars in the northern hemisphere. These results include precise, homogeneous spectral types, basic physical parameters (including the effective temperature, surface gravity and the overall metallicity, [M/H]) and measures of the chromospheric activity of our program stars. Observed and derived data presented in this paper are also available on the project's website at http://stellar.phys.appstate.edu/

    Phase field modeling of electrochemistry I: Equilibrium

    Full text link
    A diffuse interface (phase field) model for an electrochemical system is developed. We describe the minimal set of components needed to model an electrochemical interface and present a variational derivation of the governing equations. With a simple set of assumptions: mass and volume constraints, Poisson's equation, ideal solution thermodynamics in the bulk, and a simple description of the competing energies in the interface, the model captures the charge separation associated with the equilibrium double layer at the electrochemical interface. The decay of the electrostatic potential in the electrolyte agrees with the classical Gouy-Chapman and Debye-H\"uckel theories. We calculate the surface energy, surface charge, and differential capacitance as functions of potential and find qualitative agreement between the model and existing theories and experiments. In particular, the differential capacitance curves exhibit complex shapes with multiple extrema, as exhibited in many electrochemical systems.Comment: v3: To be published in Phys. Rev. E v2: Added link to cond-mat/0308179 in References 13 pages, 6 figures in 15 files, REVTeX 4, SIUnits.sty. Precedes cond-mat/030817
    corecore