13,863 research outputs found
Dynamic crossover in the global persistence at criticality
We investigate the global persistence properties of critical systems relaxing
from an initial state with non-vanishing value of the order parameter (e.g.,
the magnetization in the Ising model). The persistence probability of the
global order parameter displays two consecutive regimes in which it decays
algebraically in time with two distinct universal exponents. The associated
crossover is controlled by the initial value m_0 of the order parameter and the
typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo
simulations of the two-dimensional Ising model with Glauber dynamics display
clearly this crossover. The measured exponent of the ultimate algebraic decay
is in rather good agreement with our theoretical predictions for the Ising
universality class.Comment: 5 pages, 2 figure
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
The critical behavior of the two-dimensional N-vector cubic model is studied
within the field-theoretical renormalization-group (RG) approach. The
beta-functions and critical exponents are calculated in the five-loop
approximation, RG series obtained are resummed using Pade-Borel-Leroy and
conformal mapping techniques. It is found that for N = 2 the continuous line of
fixed points is well reproduced by the resummed RG series and an account for
the five-loop terms makes the lines of zeros of both beta-functions closer to
each another. For N > 2 the five-loop contributions are shown to shift the
cubic fixed point, given by the four-loop approximation, towards the Ising
fixed point. This confirms the idea that the existence of the cubic fixed point
in two dimensions under N > 2 is an artifact of the perturbative analysis. In
the case N = 0 the results obtained are compatible with the conclusion that the
impure critical behavior is controlled by the Ising fixed point.Comment: 18 pages, 4 figure
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
Correlations in an expanding gas of hard-core bosons
We consider a longitudinal expansion of a one-dimensional gas of hard-core
bosons suddenly released from a trap. We show that the broken translational
invariance in the initial state of the system is encoded in correlations
between the bosonic occupation numbers in the momentum space. The correlations
are protected by the integrability and exhibit no relaxation during the
expansion
Entanglement properties of quantum spin chains
We investigate the entanglement properties of a finite size 1+1 dimensional
Ising spin chain, and show how these properties scale and can be utilized to
reconstruct the ground state wave function. Even at the critical point, few
terms in a Schmidt decomposition contribute to the exact ground state, and to
physical properties such as the entropy. Nevertheless the entanglement here is
prominent due to the lower-lying states in the Schmidt decomposition.Comment: 5 pages, 6 figure
Zero dimensional area law in a gapless fermion system
The entanglement entropy of a gapless fermion subsystem coupled to a gapless
bulk by a "weak link" is considered. It is demonstrated numerically that each
independent weak link contributes an entropy proportional to lnL, where L is
linear dimension of the subsystem.Comment: 6 pages, 11 figures; added 3d computatio
Frustrated magnets in three dimensions: a nonperturbative approach
Frustrated magnets exhibit unusual critical behaviors: they display scaling
laws accompanied by nonuniversal critical exponents. This suggests that these
systems generically undergo very weak first order phase transitions. Moreover,
the different perturbative approaches used to investigate them are in conflict
and fail to correctly reproduce their behavior. Using a nonperturbative
approach we explain the mismatch between the different perturbative approaches
and account for the nonuniversal scaling observed.Comment: 7 pages, 1 figure. IOP style files included. To appear in Journal of
Physics: Condensed Matter. Proceedings of the conference HFM 2003, Grenoble,
Franc
Field-theory results for three-dimensional transitions with complex symmetries
We discuss several examples of three-dimensional critical phenomena that can
be described by Landau-Ginzburg-Wilson theories. We present an
overview of field-theoretical results obtained from the analysis of high-order
perturbative series in the frameworks of the and of the
fixed-dimension d=3 expansions. In particular, we discuss the stability of the
O(N)-symmetric fixed point in a generic N-component theory, the critical
behaviors of randomly dilute Ising-like systems and frustrated spin systems
with noncollinear order, the multicritical behavior arising from the
competition of two distinct types of ordering with symmetry O() and
O() respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200
Entanglement entropy of two disjoint intervals in c=1 theories
We study the scaling of the Renyi entanglement entropy of two disjoint blocks
of critical lattice models described by conformal field theories with central
charge c=1. We provide the analytic conformal field theory result for the
second order Renyi entropy for a free boson compactified on an orbifold
describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual
line. We have checked this prediction in cluster Monte Carlo simulations of the
classical two dimensional AT model. We have also performed extensive numerical
simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor
network techniques that allowed to obtain the reduced density matrices of
disjoint blocks of the spin-chain and to check the correctness of the
predictions for Renyi and entanglement entropies from conformal field theory.
In order to match these predictions, we have extrapolated the numerical results
by properly taking into account the corrections induced by the finite length of
the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure
Harmonic crossover exponents in O(n) models with the pseudo-epsilon expansion approach
We determine the crossover exponents associated with the traceless tensorial
quadratic field, the third- and fourth-harmonic operators for O(n) vector
models by re-analyzing the existing six-loop fixed dimension series with
pseudo-epsilon expansion. Within this approach we obtain the most accurate
theoretical estimates that are in optimum agreement with other theoretical and
experimental results.Comment: 12 pages, 1 figure. Final version accepted for publicatio
- …
