1,097 research outputs found

    Three-dimensional dispersion induced by extreme tensile strain in La_(2–x)Sr_xCuO_4 films

    Get PDF
    The electronic band structure probed by angle-resolved photoemission spectroscopy on thin epitaxial La2–xSrxCuO4 films under extreme tensile strain shows anomalous features compatible with c-axis dispersion. This result is in striking contrast with the usual quasi-two-dimensional (2D) dispersion observed up to now in most superconducting cuprates, including relaxed and compressively strained La2–xSrxCuO4 films grown under the same conditions. The data were analyzed using a 3D tight-binding dispersion for a body-centered-tetragonal lattice. We relate the enhancement of the c-axis dispersion to the significant displacement of the apical oxygen induced by epitaxial strain

    Growth-induced electron mobility enhancement at the LaAlO3_3/SrTiO3_3 interface

    Full text link
    We have studied the electronic properties of the 2D electron liquid present at the LaAlO3_3/SrTiO3_3 interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{\deg}C exhibit the highest low temperature mobility (10000 cm2/Vs\approx 10000 \textrm{ cm}^2/\textrm{Vs}) and the lowest sheet carrier density (5×1012 cm2\approx 5\times 10^{12} \textrm{ cm}^{-2}). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{\deg}C) display carrier densities in the range of 25×1013 cm2\approx 2-5 \times 10^{13} \textrm{ cm}^{-2} and mobilities of 1000 cm2/Vs\approx 1000 \textrm{ cm}^2/\textrm{Vs} at 4K. Reducing their carrier density by field effect to 8×1012 cm28\times 10^{12} \textrm{ cm}^{-2} lowers their mobilites to 50 cm2/Vs\approx 50 \textrm{ cm}^2/\textrm{Vs} bringing the conductance to the weak-localization regime

    Linear and nonlinear coupling of quantum dots in microcavities

    Full text link
    We discuss the topical and fundamental problem of strong-coupling between a quantum dot an the single mode of a microcavity. We report seminal quantitative descriptions of experimental data, both in the linear and in the nonlinear regimes, based on a theoretical model that includes pumping and quantum statistics.Comment: Proceedings of the symposium Nanostructures: Physics and Technology 2010 (http://www.ioffe.ru/NANO2010), 2 pages in proceedings styl

    Tunable Rashba spin-orbit interaction at oxide interfaces

    Full text link
    The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system

    Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces

    Full text link
    We report on a study of magnetotransport in LaAlO3/SrTiO3 interfaces characterized by mobilities of the order of several thousands cm2^{2}/Vs. We observe Shubnikov-de Haas oscillations that indicate a two-dimensional character of the Fermi surface. The frequency of the oscillations signals a multiple sub-bands occupation in the quantum well or a multiple valley configuration. From the temperature dependence of the oscillation amplitude we extract an effective carrier mass m1.45m^{*}\simeq1.45\,mem_{e}. An electric field applied in the back-gate geometry increases the mobility, the carrier density and the oscillation frequency.Comment: 4 pages, 4 figure

    Ultrafast control of strong light-matter coupling

    Get PDF
    We dynamically modulate strong light–matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light–matter coupling

    Merging of vortices and antivortices in polariton superfluids

    Get PDF
    Quantised vortices are remarkable manifestations on a macroscopic scale of the coherent nature of quantum fluids, and the study of their properties is of fundamental importance for the understanding of this peculiar state of matter. Cavity-polaritons, due to their double light-matter nature, offer a unique controllable environment to investigate these properties. In this work we theoretically investigate the possibility to deterministically achieve the annihilation of a vortex with an antivortex through the increase of the polariton density in the region surrounding the vortices. Moreover we demonstrate that by means of this mechanism an array of vortex-antivortex pairs can be completely washed out

    Effect of pure dephasing on the Jaynes-Cummings nonlinearities

    Get PDF
    We study the effect of pure dephasing on the strong-coupling between a quantum dot and the single mode of a microcavity in the nonlinear regime. We show that the photoluminescence spectrum of the system has a robust tendency to display triplet structures, instead of the expected Jaynes-Cummings pairs of doublets at the incommensurate frequencies ±(n±n1)\pm(\sqrt{n}\pm\sqrt{n-1}) for integer nn. We show that current experimental works may already manifest signatures of single photon nonlinearities.Comment: v2: 4 Pages,3 figures. New figure 2 and some changes in the text. New author adde

    Kinetics of the thermal degradation of Erica arborea by DSC: Hybrid kinetic method

    Full text link
    The scope of this work was the determination of kinetic parameters of the thermal oxidative degradation of a Mediterranean scrub using a hybrid method developed at the laboratory. DSC and TGA were used in this study under air sweeping to record oxidative reactions. Two dominating and overlapped exothermic peaks were recorded in DSC and individualized using an experimental and numerical separation. This first stage allowed obtaining the enthalpy variation of each exothermic phenomenon. In a second time, a model free method was applied on each isolated curve to determine the apparent activation energies. A reactional kinetic scheme was proposed for the global exotherm composed of two independent and consecutive reactions. In fine mean values of enthalpy variation and apparent activation energy previously determined were injected in a model fitting method to obtain the reaction order and the preexponential factor of each oxidative reaction. We plan to use these data in a sub-model to be integrated in a wildland fire spread model
    corecore