1,097 research outputs found
Three-dimensional dispersion induced by extreme tensile strain in La_(2–x)Sr_xCuO_4 films
The electronic band structure probed by angle-resolved photoemission spectroscopy on thin epitaxial La2–xSrxCuO4 films under extreme tensile strain shows anomalous features compatible with c-axis dispersion. This result is in striking contrast with the usual quasi-two-dimensional (2D) dispersion observed up to now in most superconducting cuprates, including relaxed and compressively strained La2–xSrxCuO4 films grown under the same conditions. The data were analyzed using a 3D tight-binding dispersion for a body-centered-tetragonal lattice. We relate the enhancement of the c-axis dispersion to the significant displacement of the apical oxygen induced by epitaxial strain
Growth-induced electron mobility enhancement at the LaAlO/SrTiO interface
We have studied the electronic properties of the 2D electron liquid present
at the LaAlO/SrTiO interface in series of samples prepared at different
growth temperatures. We observe that interfaces fabricated at 650{\deg}C
exhibit the highest low temperature mobility () and the lowest sheet carrier density (). These samples show metallic behavior and
Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at
higher temperatures (800-900{\deg}C) display carrier densities in the range of
and mobilities of at 4K. Reducing their carrier density by field
effect to lowers their mobilites to
bringing the conductance to the
weak-localization regime
Linear and nonlinear coupling of quantum dots in microcavities
We discuss the topical and fundamental problem of strong-coupling between a
quantum dot an the single mode of a microcavity. We report seminal quantitative
descriptions of experimental data, both in the linear and in the nonlinear
regimes, based on a theoretical model that includes pumping and quantum
statistics.Comment: Proceedings of the symposium Nanostructures: Physics and Technology
2010 (http://www.ioffe.ru/NANO2010), 2 pages in proceedings styl
Tunable Rashba spin-orbit interaction at oxide interfaces
The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface
offers exciting new functionalities, such as tunable superconductivity, and has
been proposed as a new nanoelectronics fabrication platform. Here we lay out a
new example of an electronic property arising from the interfacial breaking of
inversion symmetry, namely a large Rashba spin-orbit interaction, whose
magnitude can be modulated by the application of an external electric field. By
means of magnetotransport experiments we explore the evolution of the
spin-orbit coupling across the phase diagram of the system. We uncover a steep
rise in Rashba interaction occurring around the doping level where a quantum
critical point separates the insulating and superconducting ground states of
the system
Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces
We report on a study of magnetotransport in LaAlO3/SrTiO3 interfaces
characterized by mobilities of the order of several thousands cm/Vs. We
observe Shubnikov-de Haas oscillations that indicate a two-dimensional
character of the Fermi surface. The frequency of the oscillations signals a
multiple sub-bands occupation in the quantum well or a multiple valley
configuration. From the temperature dependence of the oscillation amplitude we
extract an effective carrier mass \,. An electric field
applied in the back-gate geometry increases the mobility, the carrier density
and the oscillation frequency.Comment: 4 pages, 4 figure
Ultrafast control of strong light-matter coupling
We dynamically modulate strong light–matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light–matter coupling
Merging of vortices and antivortices in polariton superfluids
Quantised vortices are remarkable manifestations on a macroscopic scale of the coherent nature of
quantum fluids, and the study of their properties is of fundamental importance for the understanding
of this peculiar state of matter. Cavity-polaritons, due to their double light-matter nature, offer
a unique controllable environment to investigate these properties. In this work we theoretically
investigate the possibility to deterministically achieve the annihilation of a vortex with an antivortex
through the increase of the polariton density in the region surrounding the vortices. Moreover we
demonstrate that by means of this mechanism an array of vortex-antivortex pairs can be completely
washed out
Effect of pure dephasing on the Jaynes-Cummings nonlinearities
We study the effect of pure dephasing on the strong-coupling between a
quantum dot and the single mode of a microcavity in the nonlinear regime. We
show that the photoluminescence spectrum of the system has a robust tendency to
display triplet structures, instead of the expected Jaynes-Cummings pairs of
doublets at the incommensurate frequencies for
integer . We show that current experimental works may already manifest
signatures of single photon nonlinearities.Comment: v2: 4 Pages,3 figures. New figure 2 and some changes in the text. New
author adde
Kinetics of the thermal degradation of Erica arborea by DSC: Hybrid kinetic method
The scope of this work was the determination of kinetic parameters of the
thermal oxidative degradation of a Mediterranean scrub using a hybrid method
developed at the laboratory. DSC and TGA were used in this study under air
sweeping to record oxidative reactions. Two dominating and overlapped
exothermic peaks were recorded in DSC and individualized using an experimental
and numerical separation. This first stage allowed obtaining the enthalpy
variation of each exothermic phenomenon. In a second time, a model free method
was applied on each isolated curve to determine the apparent activation
energies. A reactional kinetic scheme was proposed for the global exotherm
composed of two independent and consecutive reactions. In fine mean values of
enthalpy variation and apparent activation energy previously determined were
injected in a model fitting method to obtain the reaction order and the
preexponential factor of each oxidative reaction. We plan to use these data in
a sub-model to be integrated in a wildland fire spread model
- …
