151 research outputs found

    Interval training normalizes cCardiomyocyte function, diastolic Ca<sup>2+</sup> control, and SR Ca<sup>2+</sup> release synchronicity in a mouse model of diabetic cardiomyopathy

    Get PDF
    In the present study we explored the mechanisms behind excitation-contraction (EC)-coupling defects in cardiomyocytes from mice with type-2 diabetes (db/db), and determined whether 13-weeks of aerobic interval training could restore cardiomyocyte Ca2+ cycling and EC-coupling. Reduced contractility in cardiomyocytes isolated from sedentary db/db was associated with increased diastolic sarcoplasmic reticulum (SR)-Ca2+ leak, reduced synchrony of Ca2+ release, reduced transverse (T)-tubule density, and lower peak systolic and diastolic Ca2+ and caffeine-induced Ca2+ release. Additionally, the rate of SR Ca2+ ATPase (SERCA2a)-mediated Ca2+ uptake during diastole was reduced, whereas a faster recovery from caffeine-induced Ca2+ release indicated increased Na+/Ca2+- exchanger (NCX) activity. The increased SR-Ca2+ leak was attributed to increased Ca2+-calmodulindependent protein kinase (CaMKII&#948;) phosphorylation, supported by the normalization of SR-Ca2+ leak upon inhibition of CaMKII&#948; (AIP). Exercise training restored contractile function associated with restored SR Ca2+ release synchronicity, T-tubule density, twitch Ca2+ amplitude, SERCA2a and NCX activities, and SR-Ca2+ leak. The latter was associated with reduced phosphorylation of cytosolic CaMKII&#948;. Despite normal contractile function and Ca2+ handling after the training period, phospholamban was hyperphosphorylated at Serine-16. Protein kinase A (PKA) inhibition (H-89) in cardiomyocytes from the exercised db/db group abolished the differences in SR-Ca2+ load when compared with the sedentary db/db mice. EC-coupling changes were observed without changes in serum insulin or glucose levels, suggesting that the exercise training-induced effects are not via normalization of the diabetic condition. These data demonstrate that aerobic interval training almost completely restored the contractile function of the diabetic cardiomyocyte to levels close to sedentary wild type (WT)

    The Mediterranean island states : Malta and Cyprus

    Get PDF
    The 2004 European Union enlargement also included the Mediterranean island-states of Cyprus and Malta, two former British colonies and members of the British Commonwealth. The islands share a number of similarities but they are also dissimilar in uniquely distinct ways. The membership applications of both states initially presented the EU with a number of political difficulties. With respect to Cyprus, many member states would have preferred to see the island join the Union after the ‘Cyprus Problem’ had been settled. As for Malta, the island showed a very high degree of Euroskepticism. It froze its application in 1996 but reactivated it in 1998. Apart from this skepticism the island’s neutral status, enshrined in the Constitution could present insurmountable problems.peer-reviewe

    Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs

    No full text
    Aim: To develop biocompatible and bioresorbable negatively charged calcium phosphate nanoparticles (CaP-NPs) as an innovative therapeutic system for the delivery of bioactive molecules to the heart. Materials & methods: CaP-NPs were synthesized via a straightforward one-pot biomineralization-inspired protocol employing citrate as a stabilizing agent and regulator of crystal growth. CaP-NPs were administered to cardiac cells in vitro and effects of treatments were assessed. CaP-NPs were administered in vivo and delivery of microRNAs was evaluated. Results: CaP-NPs efficiently internalized into cardiomyocytes without promoting toxicity or interfering with any functional properties. CaP-NPs successfully encapsulated synthetic microRNAs, which were efficiently delivered into cardiac cells in vitro and in vivo. Conclusion: CaP-NPs are a safe and efficient drug-delivery system for potential therapeutic treatments of polarized cells such as cardiomyocytes

    Inhalable microparticles embedding calcium phosphate nanoparticles for heart targeting: The formulation experimental design

    Get PDF
    Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size

    Mitochondrial a kinase anchor proteins in cardiovascular health and disease: a review article on behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology

    Get PDF
    Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system

    Comprehensive evaluation of factors affecting tremor relapse after mrgfus thalamotomy: A case-control study

    Get PDF
    Objective: To identify possible relevant factors contributing to tremor relapse after MRgFUS thalamotomy in patients with essential tremor (ET) and Parkinson’s disease (PD). Methods: We identified patients with tremor relapse from a series of 79 treatments in a single institution. The demographic and clinical characteristics of the study group patients were compared to those of patients who did not relapse in the same follow-up period. Imaging and procedural factors were compared using a control group matched for clinical and demographic characteristics. Results: Concerning clinical and demographic characteristics, we did not find statistically significant differences in gender and age. Seventy-three percent of patients with tremor relapse were Parkinson’s disease patients. Using MRI, we found larger thalamotomy lesions at the 1-year follow-up in the control group with stable outcomes, compared to patients with tremor relapse. In the tractography evaluation, we found a more frequent eccentric position of the DRTt in patients with tremor relapse. Conclusions: The most relevant determining factors for tremor relapse after MRgFUS thalamotomy appear to be tremor from Parkinson’s disease and inaccurate thalamic targeting. Size of the thalamotomy lesion can also influence the outcome of treatment

    MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo

    Get PDF
    RATIONALE: MicroRNA (miR)-1 and -133 play a crucial role in skeletal and cardiac muscle biology and pathophysiology. However, their expression and regulation in vascular cell physiology and disease is currently unknown. OBJECTIVE: The aim of the present study was to evaluate the role, if any, of miR-1 and miR-133 in vascular smooth muscle cell (VSMC) phenotypic switch in vitro and in vivo. METHODS AND RESULTS: We demonstrate here that miR-133 is robustly expressed in vascular smooth muscle cells (VSMCs) in vitro and in vivo, whereas miR-1 vascular levels are negligible. miR-133 has a potent inhibitory role on VSMC phenotypic switch in vitro and in vivo, whereas miR-1 does not have any relevant effect per se. miR-133 expression is regulated by extracellular signal-regulated kinase 1/2 activation and is inversely correlated with VSMC growth. Indeed, miR-133 decreases when VSMCs are primed to proliferate in vitro and following vascular injury in vivo, whereas it increases when VSMCs are coaxed back to quiescence in vitro and in vivo. miR-133 loss- and gain-of-function experiments show that miR-133 plays a mechanistic role in VSMC growth. Accordingly, adeno-miR-133 reduces but anti-miR-133 exacerbates VSMC proliferation and migration in vitro and in vivo. miR-133 specifically suppresses the transcription factor Sp-1 expression in vitro and in vivo and through Sp-1 repression regulates smooth muscle gene expression. CONCLUSIONS: Our data show that miR-133 is a key regulator of vascular smooth muscle cell phenotypic switch in vitro and in vivo, suggesting its potential therapeutic application for vascular diseases

    Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability

    Get PDF
    The insulin IGF-1–PI3K–Akt signaling pathway has been suggested to improve cardiac inotropism and increase Ca2+ handling through the effects of the protein kinase Akt. However, the underlying molecular mechanisms remain largely unknown. In this study, we provide evidence for an unanticipated regulatory function of Akt controlling L-type Ca2+ channel (LTCC) protein density. The pore-forming channel subunit Cavα1 contains highly conserved PEST sequences (signals for rapid protein degradation), and in-frame deletion of these PEST sequences results in increased Cavα1 protein levels. Our findings show that Akt-dependent phosphorylation of Cavβ2, the LTCC chaperone for Cavα1, antagonizes Cavα1 protein degradation by preventing Cavα1 PEST sequence recognition, leading to increased LTCC density and the consequent modulation of Ca2+ channel function. This novel mechanism by which Akt modulates LTCC stability could profoundly influence cardiac myocyte Ca2+ entry, Ca2+ handling, and contractility

    Disease modeling of a mutation in α‐actinin 2 guides clinical therapy in hypertrophic cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α‐actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient‐derived human‐induced pluripotent stem cells (hiPSCs) and show that hiPSC‐derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L‐type Ca2+ current. The L‐type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM‐affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease‐causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof‐of‐principle for the use of hiPSC for personalized treatment of cardiomyopathies
    corecore