506 research outputs found
Is CHF triggered by the vapor recoil effect?
This paper deals with the triggering mechanism of the boiling crisis, a
transition from nucleate to film boiling. We observe the boiling crisis in pool
saturated boiling experimentally at nearly critical pressure to take advantage
of the slowness of the bubble growth and of the smallness of the Critical Heat
Flux (CHF) that defines the transition point. Such experiments require the
reduced gravity conditions. Close to the CHF, the slow growth of the individual
dry spots and their subsequent fusion on the transparent heater are observed
through the latter. As discussed in the paper, these observations are
consistent with numerical results obtained with the vapor recoil model of the
boiling crisis
Quench cooling under reduced gravity
We report the quench cooling experiments performed with liquid O2 under
different levels of gravity simulated with the magnetic gravity compensation. A
copper disk is quenched from 270K to 90K. It is found that the cooling time in
microgravity is very long in comparison with any other gravity level. This
phenomenon is explained by the isolation effect of the gas surrounding the
disk. The liquid subcooling is shown to drastically improuve the heat exchange
thus reducing the cooling time (about 20 times). The effect of subcooling on
the heat transfer is analyzed at different gravity levels. It is shown that
such type of experiments cannot be used for the analysis of the critical heat
flux (CHF) of the boiling crisis. The minimum heat flux (MHF) of boiling is
analyzed instead
Study of fluid behaviour under gravity compensated by a magnetic field
International audienceFluids, and especially cryogenic fluids like Hydrogen H2 and Oxygen O2 , are widely used in space technology for propulsion and cooling. The knowledge of fluid behaviour during the acceleration variation and under reduced gravity is necessary for an efficient management of fluids in space. Such a management also asks fundamental questions about thermo-hydrodynamics and phase change once buoyancy forces are cancelled. For security reasons, it is nearly impossible to use the classical microgravity means to experiment with such cryofluids. However, it is possible to counterbalance gravity by using the paramagnetic (O2) or diamagnetic (H2) properties of fluids. By applying a magnetic field gradient on these materials, a volume force is created that is able to impose to the fluid a varying effective gravity, including microgravity. We have set up a magnetic levitation facility for H2 in which many experiments have been performed. A new facility for O2 is under construction that will enable fast change in the effective gravity by quenching down the magnetic field. The facilities and some particularly representative experimental results are presented
A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting
This paper reviews the fundamental concepts and the terminology of wetting. In particular, it focuses on high temperature wetting phenomena of primary interest to materials scientists. We have chosen to split this review into two sections: one related to macroscopic (continuum) definitions and the other to a microscopic (or atomistic) approach, where the role of chemistry and structure of interfaces and free surfaces on wetting phenomena are addressed. A great deal of attention has been placed on thermodynamics. This allows clarification of many important features, including the state of equilibrium between phases, the kinetics of equilibration, triple lines, hysteresis, adsorption (segregation) and the concept of complexions, intergranular films, prewetting, bulk phase transitions versus “interface transitions”, liquid versus solid wetting, and wetting versus dewetting.Seventh Framework Programme (European Commission) (Grant FP7-NMP-2009-CSA-23348-MACAN
Wetting and bonding characteristics of selected liquid-metals with a high power diode laser treated alumina bioceramic
Changes in the wettability characteristics of an alumina bioceramic occasioned by high power diode laser (HPDL) surface treatment were apparent from the observed reduction in the contact angle. Such changes were due to the HPDL bringing about reductions the surface roughness, increases in the surface O2 content and increases in the polar component of the surface energy. Additionally, HPDL treatment of the alumina bioceramic surface was found to effect an improvement in the bonding characteristics by increasing the work of adhesion. An electronic approach was used to elucidate the bonding characteristics of the alumina bioceramic before and after HPDL treatment. It is postulated that HPDL induced changes to the alumina bioceramic produced a surface with a reduced bandgap energy which consequently increased the work of adhesion by increasing the electron transfer at the metal/oxide interface and thus the metal-oxide interactions. Furthermore, it is suggested that the increase in the work of adhesion of the alumina bioceramic after HPDL treatment was due to a correlation existing between the wettability and ionicity of the alumina bioceramic; for it is believed that the HPDL treated surface is less ionic in nature than the untreated surface and therefore exhibits better wettability characteristics
Le mouillage et les interfaces dans les matériaux inorganiques
National audienceCet article traite du mouillage et des interfaces dans les matériaux de type métal-métal ou métal-oxyde. Le couplage de la thermodynamique chimique des interfaces, avec la physique du mouillage y est illustré. L'accent est mis sur les transitions de mouillage et les phénomènes relatifs aux anisotropies de mouillage et d'interfaces, et à leur impact sur les matériaux et les nanomatériaux. Abstract : This paper deals with wetting and interfaces in metal-metal and metal-oxide systems. Coupling of thermodynamics and chemistry of interfaces with the physics of wetting is illustrated. Th
Microscopic View on Short-Range Wetting at the Free Surface of the Binary Metallic Liquid Gallium-Bismuth: An X-ray Reflectivity and Square Gradient Theory Study
We present an x-ray reflectivity study of wetting at the free surface of the
binary liquid metal gallium-bismuth (Ga-Bi) in the region where the bulk phase
separates into Bi-rich and Ga-rich liquid phases. The measurements reveal the
evolution of the microscopic structure of wetting films of the Bi-rich,
low-surface-tension phase along different paths in the bulk phase diagram. A
balance between the surface potential preferring the Bi-rich phase and the
gravitational potential which favors the Ga-rich phase at the surface pins the
interface of the two demixed liquid metallic phases close to the free surface.
This enables us to resolve it on an Angstrom level and to apply a mean-field,
square gradient model extended by thermally activated capillary waves as
dominant thermal fluctuations. The sole free parameter of the gradient model,
i.e. the so-called influence parameter, , is determined from our
measurements. Relying on a calculation of the liquid/liquid interfacial tension
that makes it possible to distinguish between intrinsic and capillary wave
contributions to the interfacial structure we estimate that fluctuations affect
the observed short-range, complete wetting phenomena only marginally. A
critical wetting transition that should be sensitive to thermal fluctuations
seems to be absent in this binary metallic alloy.Comment: RevTex4, twocolumn, 15 pages, 10 figure
Multilevel Modular Mesocrystalline Organization in Red Coral
International audienceBiominerals can achieve complex shapes as aggregates of crystalline building blocks. In the red coral skeleton, we observe that these building blocks are arranged into eight hierarchical levels of similarly (but not identically) oriented modules. The modules in each hierarchical level assemble into larger units that comprise the next higher level of the hierarchy, and consist themselves of smaller, oriented modules. EBSD and TEM studies show that the degree of crystallographic misorientation between the building blocks decreases with decreasing module size. We observe this organization down to a few nm. Thus, the transition from imperfect crystallographic order at mm scale to nearly perfect single crystalline domains at nm scale is progressive. The concept of 'mesocrystal' involves the three-dimensional crystallographic organization of nanoparticles into a highly ordered mesostructure. We add to this concept the notion of 'multilevel modularity'. This modularity has potential implications for the origin of complex biomineral shapes in nature. A multilevel modular organization with small intermodular misorientations combines a simple construction scheme, ruled by crystallographic laws, with the possibility of complex shapes. If the observations we have made on red coral extend to other biominerals, long-range crystallographic order and interfaces at all scales may be key to how some biominerals achieve complex shapes adapted to the environment in which they grow
- …
