93 research outputs found
Experimental demonstration of sub-wavelength image channeling using capacitively loaded wire medium
In this letter we experimentally demonstrate a possibility to achieve
significant sub-wavelength resolution of a near-field image channeled through a
layer of an electromagnetic crystal. An image having radius of has
been realized using an electrically dense lattice of capacitively loaded wires.
The loading allows to reduce the lattice period dramatically so that it is only
a small fraction of the free-space wavelength. It is shown that losses in the
structure only decrease the total amplitude of the image, but do not influence
the resolution.Comment: 4 pages, 7 figures, submitted to PR
Radiation pattern of a classical dipole in a photonic crystal: photon focusing
The asymptotic analysis of the radiation pattern of a classical dipole in a
photonic crystal possessing an incomplete photonic bandgap is presented. The
far-field radiation pattern demonstrates a strong modification with respect to
the dipole radiation pattern in vacuum. Radiated power is suppressed in the
direction of the spatial stopband and strongly enhanced in the direction of the
group velocity, which is stationary with respect to a small variation of the
wave vector. An effect of radiated power enhancement is explained in terms of
\emph{photon focusing}. Numerical example is given for a square-lattice
two-dimensional photonic crystal. Predictions of asymptotic analysis are
substantiated with finite-difference time-domain calculations, revealing a
reasonable agreement.Comment: Submitted to Phys. Rev.
Nondiffractive sonic crystals
We predict theoretically the nondiffractive propagation of sonic waves in
periodic acoustic media (sonic crystals), by expansion into a set of plane
waves (Bloch mode expansion), and by finite difference time domain calculations
of finite beams. We also give analytical evaluations of the parameters for
nondiffractive propagation, as well as the minimum size of the nondiffractively
propagating acoustic beams.Comment: 7 figures, submitted to J. Acoust. Soc. A
Sub-wavelength imaging at optical frequencies using canalization regime
Imaging with sub-wavelength resolution using a lens formed by periodic
metal-dielectric layered structure is demonstrated. The lens operates in
canalization regime as a transmission device and it does not involve negative
refraction and amplification of evanescent modes. The thickness of the lens
have to be an integer number of half-wavelengths and can be made as large as
required for ceratin applications, in contrast to the other sub-wavelength
lenses formed by metallic slabs which have to be much smaller than the
wavelength. Resolution of at 600 nm wavelength is confirmed by
numerical simulation for a 300 nm thick structure formed by a periodic stack of
10 nm layers of glass with and 5 nm layers of metal-dielectric
composite with . Resolution of is predicted for a
structure with same thickness, period and operating frequency, but formed by
7.76 nm layers of silicon with and 7.24 nm layers of silver with
.Comment: 4 pages, 4 figures, submitted to PR
Spatial distribution of Cherenkov radiation in periodic dielectric media
The nontrivial dispersion relation of a periodic medium affects both the
spectral and the spatial distribution of Cherenkov radiation. We present a
theory of the spatial distribution of Cherenkov radiation in the far-field zone
inside arbitrary three- and two-dimensional dielectric media. Simple analytical
expressions for the far-field are obtained in terms of the Bloch mode
expansion. Numerical examples of the Cherenkov radiation in a two-dimensional
photonic crystal is presented. The developed analytical theory demonstrates
good agreement with numerically rigorous finite-difference time-domain
calculations.Comment: 14 pages, 5 figures, Journal of Optics A (in press
Fabrication and characterization of terahertz anisotropic anti-rod dimer planar metamaterials
On homogenization of electromagnetic crystals formed by uniaxial resonant scatterers
Dispersion properties of electromagnetic crystals formed by small uniaxial
resonant scatterers (magnetic or electric) are studied using the local field
approach. The goal of the study is to determine the conditions under which the
homogenization of such crystals can be made. Therefore the consideration is
limited by the frequency region where the wavelength in the host medium is
larger than the lattice periods. It is demonstrated that together with known
restriction for the homogenization related with the large values of the
material parameters there is an additional restriction related with their small
absolute values. From the other hand, the homogenization becomes allowed in
both cases of large and small material parameters for special directions of
propagation. Two unusual effects inherent to the crystals under consideration
are revealed: flat isofrequency contour which allows subwavelength imaging
using canalization regime and birefringence of extraordinary modes which can be
used for beam splitting.Comment: 16 pages, 12 figures, submitted to PR
Calculation of atomic spontaneous emission rate in 1D finite photonic crystal with defects
We derive the expression for spontaneous emission rate in finite
one-dimensional photonic crystal with arbitrary defects using the effective
resonator model to describe electromagnetic field distributions in the
structure. We obtain explicit formulas for contributions of different types of
modes, i.e. radiation, substrate and guided modes. Formal calculations are
illustrated with a few numerical examples, which demonstrate that the
application of effective resonator model simplifies interpretation of results.Comment: Cent. Eur. J. Phys, in pres
Hybrid photonic-bandgap accelerating cavities
In a recent investigation, we studied two-dimensional point-defected photonic
bandgap cavities composed of dielectric rods arranged according to various
representative periodic and aperiodic lattices, with special emphasis on
possible applications to particle acceleration (along the longitudinal axis).
In this paper, we present a new study aimed at highlighting the possible
advantages of using hybrid structures based on the above dielectric
configurations, but featuring metallic rods in the outermost regions, for the
design of extremely-high quality factor, bandgap-based, accelerating
resonators. In this framework, we consider diverse configurations, with
different (periodic and aperiodic) lattice geometries, sizes, and
dielectric/metal fractions. Moreover, we also explore possible improvements
attainable via the use of superconducting plates to confine the electromagnetic
field in the longitudinal direction. Results from our comparative studies,
based on numerical full-wave simulations backed by experimental validations (at
room and cryogenic temperatures) in the microwave region, identify the
candidate parametric configurations capable of yielding the highest quality
factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added;
minor changes in the tex
Plasmonic nanoparticle monomers and dimers: From nano-antennas to chiral metamaterials
We review the basic physics behind light interaction with plasmonic
nanoparticles. The theoretical foundations of light scattering on one metallic
particle (a plasmonic monomer) and two interacting particles (a plasmonic
dimer) are systematically investigated. Expressions for effective particle
susceptibility (polarizability) are derived, and applications of these results
to plasmonic nanoantennas are outlined. In the long-wavelength limit, the
effective macroscopic parameters of an array of plasmonic dimers are
calculated. These parameters are attributable to an effective medium
corresponding to a dilute arrangement of nanoparticles, i.e., a metamaterial
where plasmonic monomers or dimers have the function of "meta-atoms". It is
shown that planar dimers consisting of rod-like particles generally possess
elliptical dichroism and function as atoms for planar chiral metamaterials. The
fabricational simplicity of the proposed rod-dimer geometry can be used in the
design of more cost-effective chiral metamaterials in the optical domain.Comment: submitted to Appl. Phys.
- …
