3,043 research outputs found
Power spectra of the interplanetary magnetic field near the earth
Power spectra of the interplanetary magnetic field measured by near-earth satellites upstream from the earth's bow shock are free from terrestrial contamination provided the field at the satellite does not intersect the bow shock. Considerable spectral enhancement for the range of frequencies 0.01 to 1.00 Hz, due to turbulence caused by the shock, may occur if the field observed at the satellite intersects the shock. This turbulence occurs frequently in both the morning and afternoon quadrants. In the frequency band from 0.07 to 1 Hz, this noise decreases in amplitude with radial distance from the shock with an attenuation length of 4 R sub E
Precision searches in dijets at the HL-LHC and HE-LHC
This paper explores the physics reach of the High-Luminosity Large Hadron
Collider (HL-LHC) for searches of new particles decaying to two jets. We
discuss inclusive searches in dijets and b-jets, as well as searches in
semi-inclusive events by requiring an additional lepton that increases
sensitivity to different aspects of the underlying processes. We discuss the
expected exclusion limits for generic models predicting new massive particles
that result in resonant structures in the dijet mass. Prospects of the
Higher-Energy LHC (HE-LHC) collider are also discussed. The study is based on
the Pythia8 Monte Carlo generator using representative event statistics for the
HL-LHC and HE-LHC running conditions. The event samples were created using
supercomputers at NERSC.Comment: 27 pages, 19 figure
Orbital Magnetism and Current Distribution of Two-Dimensional Electrons under Confining Potential
The spatial distribution of electric current under magnetic field and the
resultant orbital magnetism have been studied for two-dimensional electrons
under a harmonic confining potential V(\vecvar{r})=m \omega_0^2 r^2/2 in
various regimes of temperature and magnetic field, and the microscopic
conditions for the validity of Landau diamagnetism are clarified. Under a weak
magnetic field (\omega_c\lsim\omega_0, \omega_c being a cyclotron frequency)
and at low temperature (T\lsim\hbar\omega_0), where the orbital magnetic
moment fluctuates as a function of the field, the currents are irregularly
distributed paramagnetically or diamagnetically inside the bulk region. As the
temperature is raised under such a weak field, however, the currents in the
bulk region are immediately reduced and finally there only remains the
diamagnetic current flowing along the edge. At the same time, the usual Landau
diamagnetism results for the total magnetic moment. The origin of this dramatic
temperature dependence is seen to be in the multiple reflection of electron
waves by the boundary confining potential, which becomes important once the
coherence length of electrons gets longer than the system length. Under a
stronger field (\omega_c\gsim\omega_0), on the other hand, the currents in
the bulk region cause de Haas-van Alphen effect at low temperature as
T\lsim\hbar\omega_c. As the temperature gets higher (T\gsim\hbar\omega_c)
under such a strong field, the bulk currents are reduced and the Landau
diamagnetism by the edge current is recovered.Comment: 15 pages, 11 figure
Recommended from our members
Airborne gravity and precise positioning for geologic applications
Airborne gravimetry has become an important geophysical tool primarily because of advancements in methodology and instrumentation made in the past decade. Airborne gravity is especially useful when measured in conjunction with other geophysical data, such as magnetics, radar, and laser altimetry. The aerogeophysical survey over the West Antarctic ice sheet described in this paper is one such interdisciplinary study. This paper outlines in detail the instrumentation, survey and data processing methodology employed to perform airborne gravimetry from the multiinstrumented Twin Otter aircraft. Precise positioning from carrier-phase Global Positioning System (GPS) observations are combined with measurements of acceleration made by the gravity meter in the aircraft to obtain the free-air gravity anomaly measurement at aircraft altitude. GPS data are processed using the Kinematic and Rapid Static (KARS) software program, and aircraft vertical acceleration and corrections for gravity data reduction are calculated from the GPS position solution. Accuracies for the free-air anomaly are determined from crossover analysis after significant editing (2.98 mGal rms) and from a repeat track (1.39 mGal rms). The aerogeophysical survey covered a 300,000 km2 region in West Antarctica over the course of five field seasons. The gravity data from the West Antarctic survey reveal the major geologic structures of the West Antarctic rift system, including the Whitmore Mountains, the Byrd Subglacial Basin, the Sinuous Ridge, the Ross Embayment, and Siple Dome. These measurements, in conjunction with magnetics and ice-penetrating radar, provide the information required to reveal the tectonic fabric and history of this important region
Periphyton responses to eutrophication in the Florida Everglades: Cross-system patterns of structural and compositional change
We examined periphyton along transects in five Everglades marshes and related compositional and functional aspects to phosphorus(P ) gradients caused by enriched inflows. Results were compared to those of a P-addition experiment in a pristine Everglades marsh. While the water total P (TP) concentration was not related to P load in the marshes or experiment the concentration of TP in periphyton was strongly correlated with the distance from the P source. Increased P concentration in periphyton was associated with a loss of biomass,p articularly of the calcifying mat-forming matrix, regardless of the growth form of the periphyton (epiphytic, floating,or epilithic). Diatom species composition was also strongly related to P availability, but the TP optima of many species varied among marshes. Enriched periphyton communities were found 14 km downstream of P inputs to one marsh that has been receiving enhanced P loads for decades, where other studies using different biotic indicators show negligible change in the same marsh. Although recovery trajectories are unknown, periphyton indicators should serve as excellent metrics for the progression or amelioration of P-related effects in the Everglades
Anomalous Exponent of the Spin Correlation Function of a Quantum Hall Edge
The charge and spin correlation functions of partially spin-polarized edge
electrons of a quantum Hall bar are studied using effective Hamiltonian and
bosonization techniques. In the presence of the Coulomb interaction between the
edges with opposite chirality we find a different crossover behavior in spin
and charge correlation functions. The crossover of the spin correlation
function in the Coulomb dominated regime is characterized by an anomalous
exponent, which originates from the finite value of the effective interaction
for the spin degree of freedom in the long wavelength limit. The anomalous
exponent may be determined by measuring nuclear spin relaxation rates in a
narrow quantum Hall bar or in a quantum wire in strong magnetic fields.Comment: 4 pages, Revtex file, no figures. To appear in Physical Revews B,
Rapid communication
Sex-specific fundamental and formant frequency patterns in a cross-sectional study
An extensive developmental acoustic study of the speech patterns of children and adults was reported by Lee and colleagues [Lee et al., J. Acoust. Soc. Am. 105, 1455-1468 (1999)]. This paper presents a reexamination of selected fundamental frequency and formant frequency data presented in their report for 10 monophthongs by investigating sex-specific and developmental patterns using two different approaches. The first of these includes the investigation of age- and sex-specific formant frequency patterns in the monophthongs. The second, the investigation of fundamental frequency and formant frequency data using the critical band rate (bark) scale and a number of acoustic-phonetic dimensions of the monophthongs from an age- and sex-specific perspective. These acoustic-phonetic dimensions include: vowel spaces and distances from speaker centroids; frequency differences between the formant frequencies of males and females; vowel openness/closeness and frontness/backness; the degree of vocal effort; and formant frequency ranges. Both approaches reveal both age- and sex-specific development patterns which also appear to be dependent on whether vowels are peripheral or non-peripheral. The developmental emergence of these sex-specific differences are discussed with reference to anatomical, physiological, sociophonetic and culturally determined factors. Some directions for further investigation into the age-linked sex differences in speech across the lifespan are also proposed
- …
