907 research outputs found
Three-Body and One-Body Channels of the Auger Core-Valence-Valence decay: Simplified Approach
We propose a computationally simple model of Auger and APECS line shapes from
open-band solids. Part of the intensity comes from the decay of unscreened
core-holes and is obtained by the two-body Green's function ,
as in the case of filled bands. The rest of the intensity arises from screened
core-holes and is derived using a variational description of the relaxed ground
state; this involves the two-holes-one-electron propagator , which
also contains one-hole contributions. For many transition metals, the two-hole
Green's function can be well described by the Ladder
Approximation, but the three-body Green's function poses serious further
problems. To calculate , treating electrons and holes on equal
footing, we propose a practical approach to sum the series to all orders. We
achieve that by formally rewriting the problem in terms of a fictitious
three-body interaction. Our method grants non-negative densities of states,
explains the apparent negative-U behavior of the spectra of early transition
metals and interpolates well between weak and strong coupling, as we
demonstrate by test model calculations.Comment: AMS-LaTeX file, 23 pages, 8 eps and 3 ps figures embedded in the text
with epsfig.sty and float.sty, submitted to Phys. Rev.
W=0 pairing in Hubbard and related models of low-dimensional superconductors
Lattice Hamiltonians with on-site interaction have W=0 solutions, that
is, many-body {\em singlet} eigenstates without double occupation. In
particular, W=0 pairs give a clue to understand the pairing force in repulsive
Hubbard models. These eigenstates are found in systems with high enough
symmetry, like the square, hexagonal or triangular lattices. By a general
theorem, we propose a systematic way to construct all the W=0 pairs of a given
Hamiltonian. We also introduce a canonical transformation to calculate the
effective interaction between the particles of such pairs. In geometries
appropriate for the CuO planes of cuprate superconductors, armchair
Carbon nanotubes or Cobalt Oxides planes, the dressed pair becomes a bound
state in a physically relevant range of parameters. We also show that W=0 pairs
quantize the magnetic flux like superconducting pairs do. The pairing mechanism
breaks down in the presence of strong distortions. The W=0 pairs are also the
building blocks for the antiferromagnetic ground state of the half-filled
Hubbard model at weak coupling. Our analytical results for the
Hubbard square lattice, compared to available numerical data, demonstrate that
the method, besides providing intuitive grasp on pairing, also has quantitative
predictive power. We also consider including phonon effects in this scenario.
Preliminary calculations with small clusters indicate that vector phonons
hinder pairing while half-breathing modes are synergic with the W=0 pairing
mechanism both at weak coupling and in the polaronic regime.Comment: 42 pages, Topical Review to appear in Journal of Physics C: Condensed
Matte
Are violations to temporal Bell inequalities there when somebody looks?
The possibility of observing violations of temporal Bell inequalities,
originally proposed by Leggett as a mean of testing the quantum mechanical
delocalization of suitably chosen macroscopic bodies, is discussed by taking
into account the effect of the measurement process. A general criterion
quantifying this possibility is defined and shown not to be fulfilled by the
various experimental configurations proposed so far to test inequalities of
different forms.Comment: 7 pages, 1 eps figure, needs europhys.sty and euromacr.tex, enclosed
in the .tar.gz file; accepted for publication in Europhysics Letter
Cuprate addition to a 6-substituted pentafulvene: preparation of sec-alkyl substituted titanocene dichlorides and their biological activity
The copper-catalysed (10 mol-% CuBr·SMe2, CuCN·LiCl or CuI/PPh3) addition of RMgBr to the pentafulvene 1-(cyclopenta-2,4-dien-1-ylidenemethyl)-2-methoxybenzene allows the formation of cyclopentadienyl derivatives with α-CHR(2-MeOPh) sidechains (R = Me, Et, nBu, iBu, allyl, Ph) without H– transfer. The deprotonation of these sec-alkyl-substituted cyclopentadienyls followed by the addition of TiCl4 allows the isolation of TiCl2{η5-C5H4CHR(2-OMePh)} as rac/meso mixtures that show activity against human colon, breast and pancreatic cell lines (GI50 2.3–42.4 μM)
Auger transition from orbitally degenerate systems: Effects of screening and multielectron excitations
We calculate Auger spectra given by the two-hole Green's function from
orbitally degenerate Hubbard-like models as a function of correlation strength
and band filling. The resulting spectra are qualitatively different from those
obtained from fully-filled singly degenerate models due to the presence of
screening dynamics and multielectron excitations. Application to a real system
shows remarkable agreement with experimental results leading to
reinterpretation of spectral features.Comment: To appear in Phy. Rev. Let
Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals
CVV Auger electron spectra are calculated for a multi-band Hubbard model
including correlations among the valence electrons as well as correlations
between core and valence electrons. The interest is focused on the
ferromagnetic 3d-transition metals. The Auger line shape is calculated from a
three-particle Green function. A realistic one-particle input is taken from
tight-binding band-structure calculations. Within a diagrammatic approach we
can distinguish between the \textit{direct} correlations among those electrons
participating in the Auger process and the \textit{indirect} correlations in
the rest system. The indirect correlations are treated within second-order
perturbation theory for the self-energy. The direct correlations are treated
using the valence-valence ladder approximation and the first-order perturbation
theory with respect to valence-valence and core-valence interactions. The
theory is evaluated numerically for ferromagnetic Ni. We discuss the
spin-resolved quasi-particle band structure and the Auger spectra and
investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press
One Dimensional Kondo Lattice Model Studied by the Density Matrix Renormalization Group Method
Recent developments of the theoretical investigations on the one-dimensional
Kondo lattice model by using the density matrix renormalization group (DMRG)
method are discussed in this review. Short summaries are given for the
zero-temperature DMRG, the finite-temperature DMRG, and also its application to
dynamic quantities. Away from half-filling, the paramagnetic metallic state is
shown to be a Tomonaga-Luttinger liquid with the large Fermi surface. For the
large Fermi surface its size is determined by the sum of the densities of the
conduction electrons and the localized spins. The correlation exponent K_rho of
this metallic phase is smaller than 1/2. At half-filling the ground state is
insulating. Excitation gaps are different depending on channels, the spin gap,
the charge gap and the quasiparticle gap. Temperature dependence of the spin
and charge susceptibilities and specific heat are discussed. Particularly
interesting is the temperature dependence of various excitation spectra, which
show unusual properties of the Kondo insulators.Comment: 18 pages, 23 Postscript figures, REVTe
EU State Aid Policy and the Politics of External Trade Relations
European Union (EU) state aid policy has an oft-overlooked but politically-charged external dimension that is most clearly witnessed in the linkage with external trade relations. The article seeks to illuminate the issues and potential problems raised by this state aid-trade linkage. When this linkage is made, the EU engages in an array of complex international interactions through which it may pursue two politically-contentious procedures: countervailing duties or dispute settlement. The article argues that an understanding of the EU’s role in these complex interactions must take into account the Union’s institutional landscape and the competing preferences of different private interests. When deciding to impose countervailing duties against foreign state aids (subsidies), private interests play a significant role in initiating investigations and can use their access to EU institutions to encourage the imposition of such measures. While a variety of factors help to explain why the EU prefers pursuing countervailing duties, the Union also actively uses the World Trade Organization’s formal dispute settlement mechanism. Under this alternative, private interests again play an important role, pursuing varying strategies depending on their preferences. The most important determinant of a firm’s preference to pursue countervailing duties or the dispute settlement mechanism appears to be the extent to which the firm is concerned with restoring competition in their home market or with restoring competition in multiple/global markets
Curie-Weiss model of the quantum measurement process
A hamiltonian model is solved, which satisfies all requirements for a
realistic ideal quantum measurement. The system S is a spin-\half, whose
-component is measured through coupling with an apparatus A=M+B, consisting
of a magnet \RM formed by a set of spins with quartic infinite-range
Ising interactions, and a phonon bath \RB at temperature . Initially A is
in a metastable paramagnetic phase. The process involves several time-scales.
Without being much affected, A first acts on S, whose state collapses in a very
brief time. The mechanism differs from the usual decoherence. Soon after its
irreversibility is achieved. Finally the field induced by S on M, which may
take two opposite values with probabilities given by Born's rule, drives A into
its up or down ferromagnetic phase. The overall final state involves the
expected correlations between the result registered in M and the state of S.
The measurement is thus accounted for by standard quantum statistical mechanics
and its specific features arise from the macroscopic size of the apparatus.Comment: 5 pages Revte
Boson Dominance in nuclei
We present a new method of bosonization of fermion systems applicable when
the partition function is dominated by composite bosons. Restricting the
partition function to such states we get an euclidean bosonic action from which
we derive the Hamiltonian. Such a procedure respects all the fermion
symmetries, in particular fermion number conservation, and provides a boson
mapping of all fermion operators.Comment: 12 page
- …
