907 research outputs found

    Three-Body and One-Body Channels of the Auger Core-Valence-Valence decay: Simplified Approach

    Full text link
    We propose a computationally simple model of Auger and APECS line shapes from open-band solids. Part of the intensity comes from the decay of unscreened core-holes and is obtained by the two-body Green's function Gω(2)G^{(2)}_{\omega}, as in the case of filled bands. The rest of the intensity arises from screened core-holes and is derived using a variational description of the relaxed ground state; this involves the two-holes-one-electron propagator GωG_{\omega}, which also contains one-hole contributions. For many transition metals, the two-hole Green's function Gω(2)G^{(2)}_{\omega} can be well described by the Ladder Approximation, but the three-body Green's function poses serious further problems. To calculate GωG_{\omega}, treating electrons and holes on equal footing, we propose a practical approach to sum the series to all orders. We achieve that by formally rewriting the problem in terms of a fictitious three-body interaction. Our method grants non-negative densities of states, explains the apparent negative-U behavior of the spectra of early transition metals and interpolates well between weak and strong coupling, as we demonstrate by test model calculations.Comment: AMS-LaTeX file, 23 pages, 8 eps and 3 ps figures embedded in the text with epsfig.sty and float.sty, submitted to Phys. Rev.

    W=0 pairing in Hubbard and related models of low-dimensional superconductors

    Full text link
    Lattice Hamiltonians with on-site interaction WW have W=0 solutions, that is, many-body {\em singlet} eigenstates without double occupation. In particular, W=0 pairs give a clue to understand the pairing force in repulsive Hubbard models. These eigenstates are found in systems with high enough symmetry, like the square, hexagonal or triangular lattices. By a general theorem, we propose a systematic way to construct all the W=0 pairs of a given Hamiltonian. We also introduce a canonical transformation to calculate the effective interaction between the particles of such pairs. In geometries appropriate for the CuO2_{2} planes of cuprate superconductors, armchair Carbon nanotubes or Cobalt Oxides planes, the dressed pair becomes a bound state in a physically relevant range of parameters. We also show that W=0 pairs quantize the magnetic flux like superconducting pairs do. The pairing mechanism breaks down in the presence of strong distortions. The W=0 pairs are also the building blocks for the antiferromagnetic ground state of the half-filled Hubbard model at weak coupling. Our analytical results for the 4×44\times 4 Hubbard square lattice, compared to available numerical data, demonstrate that the method, besides providing intuitive grasp on pairing, also has quantitative predictive power. We also consider including phonon effects in this scenario. Preliminary calculations with small clusters indicate that vector phonons hinder pairing while half-breathing modes are synergic with the W=0 pairing mechanism both at weak coupling and in the polaronic regime.Comment: 42 pages, Topical Review to appear in Journal of Physics C: Condensed Matte

    Are violations to temporal Bell inequalities there when somebody looks?

    Get PDF
    The possibility of observing violations of temporal Bell inequalities, originally proposed by Leggett as a mean of testing the quantum mechanical delocalization of suitably chosen macroscopic bodies, is discussed by taking into account the effect of the measurement process. A general criterion quantifying this possibility is defined and shown not to be fulfilled by the various experimental configurations proposed so far to test inequalities of different forms.Comment: 7 pages, 1 eps figure, needs europhys.sty and euromacr.tex, enclosed in the .tar.gz file; accepted for publication in Europhysics Letter

    Cuprate addition to a 6-substituted pentafulvene: preparation of sec-alkyl substituted titanocene dichlorides and their biological activity

    Get PDF
    The copper-catalysed (10 mol-% CuBr·SMe2, CuCN·LiCl or CuI/PPh3) addition of RMgBr to the pentafulvene 1-(cyclopenta-2,4-dien-1-ylidenemethyl)-2-methoxybenzene allows the formation of cyclopentadienyl derivatives with α-CHR(2-MeOPh) sidechains (R = Me, Et, nBu, iBu, allyl, Ph) without H– transfer. The deprotonation of these sec-alkyl-substituted cyclopentadienyls followed by the addition of TiCl4 allows the isolation of TiCl2{η5-C5H4CHR(2-OMePh)} as rac/meso mixtures that show activity against human colon, breast and pancreatic cell lines (GI50 2.3–42.4 μM)

    Auger transition from orbitally degenerate systems: Effects of screening and multielectron excitations

    Get PDF
    We calculate Auger spectra given by the two-hole Green's function from orbitally degenerate Hubbard-like models as a function of correlation strength and band filling. The resulting spectra are qualitatively different from those obtained from fully-filled singly degenerate models due to the presence of screening dynamics and multielectron excitations. Application to a real system shows remarkable agreement with experimental results leading to reinterpretation of spectral features.Comment: To appear in Phy. Rev. Let

    Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals

    Full text link
    CVV Auger electron spectra are calculated for a multi-band Hubbard model including correlations among the valence electrons as well as correlations between core and valence electrons. The interest is focused on the ferromagnetic 3d-transition metals. The Auger line shape is calculated from a three-particle Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a diagrammatic approach we can distinguish between the \textit{direct} correlations among those electrons participating in the Auger process and the \textit{indirect} correlations in the rest system. The indirect correlations are treated within second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-valence ladder approximation and the first-order perturbation theory with respect to valence-valence and core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-resolved quasi-particle band structure and the Auger spectra and investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press

    One Dimensional Kondo Lattice Model Studied by the Density Matrix Renormalization Group Method

    Full text link
    Recent developments of the theoretical investigations on the one-dimensional Kondo lattice model by using the density matrix renormalization group (DMRG) method are discussed in this review. Short summaries are given for the zero-temperature DMRG, the finite-temperature DMRG, and also its application to dynamic quantities. Away from half-filling, the paramagnetic metallic state is shown to be a Tomonaga-Luttinger liquid with the large Fermi surface. For the large Fermi surface its size is determined by the sum of the densities of the conduction electrons and the localized spins. The correlation exponent K_rho of this metallic phase is smaller than 1/2. At half-filling the ground state is insulating. Excitation gaps are different depending on channels, the spin gap, the charge gap and the quasiparticle gap. Temperature dependence of the spin and charge susceptibilities and specific heat are discussed. Particularly interesting is the temperature dependence of various excitation spectra, which show unusual properties of the Kondo insulators.Comment: 18 pages, 23 Postscript figures, REVTe

    EU State Aid Policy and the Politics of External Trade Relations

    Get PDF
    European Union (EU) state aid policy has an oft-overlooked but politically-charged external dimension that is most clearly witnessed in the linkage with external trade relations. The article seeks to illuminate the issues and potential problems raised by this state aid-trade linkage. When this linkage is made, the EU engages in an array of complex international interactions through which it may pursue two politically-contentious procedures: countervailing duties or dispute settlement. The article argues that an understanding of the EU’s role in these complex interactions must take into account the Union’s institutional landscape and the competing preferences of different private interests. When deciding to impose countervailing duties against foreign state aids (subsidies), private interests play a significant role in initiating investigations and can use their access to EU institutions to encourage the imposition of such measures. While a variety of factors help to explain why the EU prefers pursuing countervailing duties, the Union also actively uses the World Trade Organization’s formal dispute settlement mechanism. Under this alternative, private interests again play an important role, pursuing varying strategies depending on their preferences. The most important determinant of a firm’s preference to pursue countervailing duties or the dispute settlement mechanism appears to be the extent to which the firm is concerned with restoring competition in their home market or with restoring competition in multiple/global markets

    Curie-Weiss model of the quantum measurement process

    Get PDF
    A hamiltonian model is solved, which satisfies all requirements for a realistic ideal quantum measurement. The system S is a spin-\half, whose zz-component is measured through coupling with an apparatus A=M+B, consisting of a magnet \RM formed by a set of N1N\gg 1 spins with quartic infinite-range Ising interactions, and a phonon bath \RB at temperature TT. Initially A is in a metastable paramagnetic phase. The process involves several time-scales. Without being much affected, A first acts on S, whose state collapses in a very brief time. The mechanism differs from the usual decoherence. Soon after its irreversibility is achieved. Finally the field induced by S on M, which may take two opposite values with probabilities given by Born's rule, drives A into its up or down ferromagnetic phase. The overall final state involves the expected correlations between the result registered in M and the state of S. The measurement is thus accounted for by standard quantum statistical mechanics and its specific features arise from the macroscopic size of the apparatus.Comment: 5 pages Revte

    Boson Dominance in nuclei

    Full text link
    We present a new method of bosonization of fermion systems applicable when the partition function is dominated by composite bosons. Restricting the partition function to such states we get an euclidean bosonic action from which we derive the Hamiltonian. Such a procedure respects all the fermion symmetries, in particular fermion number conservation, and provides a boson mapping of all fermion operators.Comment: 12 page
    corecore