399 research outputs found
Adiabatic quantum search with atoms in a cavity driven by lasers
We propose an implementation of the quantum search algorithm of a marked item
in an unsorted list of N items by adiabatic passage in a cavity-laser-atom
system. We use an ensemble of N identical three-level atoms trapped in a
single-mode cavity and driven by two lasers. In each atom, the same level
represents a database entry. One of the atoms is marked by having an energy gap
between its two ground states. Appropriate time delays between the two laser
pulses allow one to populate the marked state starting from an initial
entangled state within a decoherence-free adiabatic subspace. The time to
achieve such a process is shown to exhibit the Grover speedup.Comment: 5 pages, 3 figure
Spatial multipartite entanglement and localization of entanglement
We present a simple model together with its physical implementation which
allows one to generate multipartite entanglement between several spatial modes
of the electromagnetic field. It is based on parametric down-conversion with N
pairs of symmetrically-tilted plane waves serving as a pump. The
characteristics of this spatial entanglement are investigated in the cases of
zero as well as nonzero phase mismatch. Furthermore, the phenomenon of
entanglement localization in just two spatial modes is studied in detail and
results in an enhancement of the entanglement by a factor square root of N.Comment: 7 pages, 2 figure
Quantum search by parallel eigenvalue adiabatic passage
We propose a strategy to achieve the Grover search algorithm by adiabatic
passage in a very efficient way. An adiabatic process can be characterized by
the instantaneous eigenvalues of the pertaining Hamiltonian, some of which form
a gap. The key to the efficiency is based on the use of parallel eigenvalues.
This allows us to obtain non-adiabatic losses which are exponentially small,
independently of the number of items in the database in which the search is
performed.Comment: 7 pages, 4 figure
Entanglement-enhanced classical capacity of two-qubit quantum channels with memory: the exact solution
The maximal amount of information which is reliably transmitted over two uses
of general Pauli channels with memory is proven to be achieved by maximally
entangled states beyond some memory threshold. In particular, this proves a
conjecture on the depolarizing channel by Macchiavello and Palma [Phys. Rev. A
{\bf 65}, 050301(R) (2002)]. Below the memory threshold, for arbitrary Pauli
channels, the two-use classical capacity is only achieved by a particular type
of product states.Comment: 5 page
Robust quantum control by shaped pulse
Considering the problem of the control of a two-state quantum system by an
external field, we establish a general and versatile method that allows the
derivation of smooth pulses, suitable for ultrafast applications, that feature
the properties of high-fidelity, robustness, and low area. Such shaped pulses
can be viewed as a single-shot generalization of the composite pulse technique
with a time-dependent phase
Tripartite entanglement in parametric down-conversion with spatially-structured pump
Most investigations of multipartite entanglement have been concerned with
temporal modes of the electromagnetic field, and have neglected its spatial
structure. We present a simple model which allows to generate tripartite
entanglement between spatial modes by parametric down-conversion with two
symmetrically-tilted plane waves serving as a pump. The characteristics of this
entanglement are investigated. We also discuss the generalization of our scheme
to 2N+1-partite entanglement using 2N symmetrically-tilted plane pump waves.
Another interesting feature is the possibility of entanglement localization in
just two spatial modes.Comment: 6 pages, 2 figure
Entanglement may enhance the channel capacity in arbitrary dimensions
We consider explicitly two examples of d-dimensional quantum channels with
correlated noise and show that, in agreement with previous results on Pauli
qubit channels, there are situations where maximally entangled input states
achieve higher values of the output mutual information than product states. We
obtain a strong dependence of this effect on the nature of the noise
correlations as well as on the parity of the space dimension, and conjecture
that when entanglement gives an advantage in terms of mutual information,
maximally entangled states achieve the channel capacity.Comment: 12 pages, 3 figure
Laser control for the optimal evolution of pure quantum states
Starting from an initial pure quantum state, we present a strategy for
reaching a target state corresponding to the extremum (maximum or minimum) of a
given observable. We show that a sequence of pulses of moderate intensity,
applied at times when the average of the observable reaches its local or global
extremum, constitutes a strategy transferable to different control issues.
Among them, post-pulse molecular alignment and orientation are presented as
examples. The robustness of such strategies with respect to experimentally
relevant parameters is also examined.Comment: 16 pages, 9 figure
Optimized time-dependent perturbation theory for pulse-driven quantum dynamics in atomic or molecular systems
We present a time-dependent perturbative approach adapted to the treatment of
intense pulsed interactions. We show there is a freedom in choosing secular
terms and use it to optimize the accuracy of the approximation. We apply this
formulation to a unitary superconvergent technique and improve the accuracy by
several orders of magnitude with respect to the Magnus expansion.Comment: 4 pages, 2 figure
Reaching optimally oriented molecular states by laser kicks
We present a strategy for post-pulse orientation aiming both at efficiency
and maximal duration within a rotational period. We first identify the
optimally oriented states which fulfill both requirements. We show that a
sequence of half-cycle pulses of moderate intensity can be devised for reaching
these target states.Comment: 4 pages, 3 figure
- …
