4,218 research outputs found

    Hierarchic trees with branching number close to one: noiseless KPZ equation with additional linear term for imitation of 2-d and 3-d phase transitions.

    Full text link
    An imitation of 2d field theory is formulated by means of a model on the hierarhic tree (with branching number close to one) with the same potential and the free correlators identical to 2d correlators ones. Such a model carries on some features of the original model for certain scale invariant theories. For the case of 2d conformal models it is possible to derive exact results. The renormalization group equation for the free energy is noiseless KPZ equation with additional linear term.Comment: latex, 5 page

    Large Deviation Function of the Partially Asymmetric Exclusion Process

    Full text link
    The large deviation function obtained recently by Derrida and Lebowitz for the totally asymmetric exclusion process is generalized to the partially asymmetric case in the scaling limit. The asymmetry parameter rescales the scaling variable in a simple way. The finite-size corrections to the universal scaling function and the universal cumulant ratio are also obtained to the leading order.Comment: 10 pages, 2 eps figures, minor changes, submitted to PR

    Zero Temperature Dynamics of the Weakly Disordered Ising Model

    Full text link
    The Glauber dynamics of the pure and weakly disordered random-bond 2d Ising model is studied at zero-temperature. A single characteristic length scale, L(t)L(t), is extracted from the equal time correlation function. In the pure case, the persistence probability decreases algebraically with the coarsening length scale. In the disordered case, three distinct regimes are identified: a short time regime where the behaviour is pure-like; an intermediate regime where the persistence probability decays non-algebraically with time; and a long time regime where the domains freeze and there is a cessation of growth. In the intermediate regime, we find that P(t)L(t)θP(t)\sim L(t)^{-\theta'}, where θ=0.420±0.009\theta' = 0.420\pm 0.009. The value of θ\theta' is consistent with that found for the pure 2d Ising model at zero-temperature. Our results in the intermediate regime are consistent with a logarithmic decay of the persistence probability with time, P(t)(lnt)θdP(t)\sim (\ln t)^{-\theta_d}, where θd=0.63±0.01\theta_d = 0.63\pm 0.01.Comment: references updated, very minor amendment to abstract and the labelling of figures. To be published in Phys Rev E (Rapid Communications), 1 March 199

    Two-way traffic flow: exactly solvable model of traffic jam

    Full text link
    We study completely asymmetric 2-channel exclusion processes in 1 dimension. It describes a two-way traffic flow with cars moving in opposite directions. The interchannel interaction makes cars slow down in the vicinity of approaching cars in other lane. Particularly, we consider in detail the system with a finite density of cars on one lane and a single car on the other one. When the interchannel interaction reaches a critical value, traffic jam occurs, which turns out to be of first order phase transition. We derive exact expressions for the average velocities, the current, the density profile and the kk- point density correlation functions. We also obtain the exact probability of two cars in one lane being distance RR apart, provided there is a finite density of cars on the other lane, and show the two cars form a weakly bound state in the jammed phase.Comment: 17 pages, Latex, ioplppt.sty, 11 ps figure

    Exact density profiles for fully asymmetric exclusion process with discrete-time dynamics

    Full text link
    Exact density profiles in the steady state of the one-dimensional fully asymmetric simple exclusion process on semi-infinite chains are obtained in the case of forward-ordered sequential dynamics by taking the thermodynamic limit in our recent exact results for a finite chain with open boundaries. The corresponding results for sublattice parallel dynamics follow from the relationship obtained by Rajewsky and Schreckenberg [Physica A 245, 139 (1997)] and for parallel dynamics from the mapping found by Evans, Rajewsky and Speer [J. Stat. Phys. 95, 45 (1999)]. By comparing the asymptotic results appropriate for parallel update with those published in the latter paper, we correct some technical errors in the final results given there.Comment: About 10 pages and 3 figures, new references are added and a comparison is made with the results by de Gier and Nienhuis [Phys. Rev. E 59, 4899(1999)

    The political import of deconstruction—Derrida’s limits?: a forum on Jacques Derrida’s specters of Marx after 25 Years, part I

    Get PDF
    Jacques Derrida delivered the basis of The Specters of Marx: The State of the Debt, the Work of Mourning, & the New International as a plenary address at the conference ‘Whither Marxism?’ hosted by the University of California, Riverside, in 1993. The longer book version was published in French the same year and appeared in English and Portuguese the following year. In the decade after the publication of Specters, Derrida’s analyses provoked a large critical literature and invited both consternation and celebration by figures such as Antonio Negri, Wendy Brown and Frederic Jameson. This forum seeks to stimulate new reflections on Derrida, deconstruction and Specters of Marx by considering how the futures past announced by the book have fared after an eventful quarter century. Maja Zehfuss, Antonio Vázquez-Arroyo and Dan Bulley and Bal Sokhi-Bulley offer sharp, occasionally exasperated, meditations on the political import of deconstruction and the limits of Derrida’s diagnoses in Specters of Marx but also identify possible paths forward for a global politics taking inspiration in Derrida’s work of the 1990s

    Spectral gap of the totally asymmetric exclusion process at arbitrary filling

    Full text link
    We calculate the spectral gap of the Markov matrix of the totally asymmetric simple exclusion process (TASEP) on a ring of L sites with N particles. Our derivation is simple and self-contained and extends a previous calculation that was valid only for half-filling. We use a special property of the Bethe equations for TASEP to reformulate them as a one-body problem. Our method is closely related to the one used to derive exact large deviation functions of the TASEP

    Bethe Ansatz Solution for a Defect Particle in the Asymmetric Exclusion Process

    Full text link
    The asymmetric exclusion process on a ring in one-dimension is considered with a single defect particle. The steady state has previously been solved by a matrix product method. Here we use the Bethe ansatz to solve exactly for the long time limit behaviour of the generating function of the distance travelled by the defect particle. This allows us to recover steady state properties known from the matrix approach such as the velocity, and obtain new results such as the diffusion constant of the defect particle. In the case where the defect particle is a second class particle we determine the large deviation function and show that in a certain range the distribution of the distance travelled about the mean is Gaussian. Moreover the variance (diffusion constant) grows as L to the power 1/2 where is the system size. This behaviour can be related to the superdiffusive spreading of excess mass fluctuations on an infinite system. In the case where the defect particle produces a shock, our expressions for the velocity and the diffusion constant coincide with those calculated previously for an infinite system by Ferrari and Fontes.Comment: Latex, 23 page

    Persistence in systems with algebraic interaction

    Full text link
    Persistence in coarsening 1D spin systems with a power law interaction r1σr^{-1-\sigma} is considered. Numerical studies indicate that for sufficiently large values of the interaction exponent σ\sigma (σ1/2\sigma\geq 1/2 in our simulations), persistence decays as an algebraic function of the length scale LL, P(L)LθP(L)\sim L^{-\theta}. The Persistence exponent θ\theta is found to be independent on the force exponent σ\sigma and close to its value for the extremal (σ\sigma \to \infty) model, θˉ=0.17507588...\bar\theta=0.17507588.... For smaller values of the force exponent (σ<1/2\sigma< 1/2), finite size effects prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid significant boundary effects for small σ\sigma, the system size should grow as [O(1/σ)]1/σ{[{\cal O}(1/\sigma)]}^{1/\sigma}.Comment: 4 pages 4 figure
    corecore