12,789 research outputs found
Spatially Selective and Reversible Doping Control in Cuprate Films
We describe a reversible, spatially-controlled doping method for cuprate
films. The technique has been used to create superconductor-antiferromagnetic
insulator-superconductor (S-AFI-S) junctions and optimally doped
superconductor-underdoped superconductor-optimally doped superconductor
(OS-US-OS) cuprate structures. We demonstrate how the S-AFI-S structure can be
employed to reliably measure the transport properties of the antiferromagnetic
insulator region at cryogenic temperatures using the superconductors as
seamless electrical leads. We also discuss applied and fundamental issues which
may be addressed with the structures created with this doping method. Although
it is implemented on a cuprate film (YBa2Cu3O7-delta) in this work, the method
can also be applied to any mixed-valence transition metal oxide whose physical
properties are determined by oxygen content.Comment: 14 pages, 4 figure
Photoemission Evidence for a Remnant Fermi Surface and d-Wave-Like Dispersion in Insulating Ca2CuO2Cl2
An angle resolved photoemission study on Ca2CuO2Cl2, a parent compound of
high Tc superconductors is reported. Analysis of the electron occupation
probability, n(k) from the spectra shows a steep drop in spectral intensity
across a contour that is close to the Fermi surface predicted by the band
calculation. This analysis reveals a Fermi surface remnant even though
Ca2CuO2Cl2 is a Mott insulator. The lowest energy peak exhibits a dispersion
with approximately the |cos(kxa)-cos(kya)| form along this remnant Fermi
surface. Together with the data from Dy doped Bi2Sr2CaCu2O(8 + delta) these
results suggest that this d-wave like dispersion of the insulator is the
underlying reason for the pseudo gap in the underdoped regime.Comment: 9 pages, including 7 figures. Published in Science, one figure
correcte
Crossover from adiabatic to sudden interaction quenches in the Hubbard model: Prethermalization and nonequilibrium dynamics
The recent experimental implementation of condensed matter models in optical
lattices has motivated research on their nonequilibrium behavior. Predictions
on the dynamics of superconductors following a sudden quench of the pairing
interaction have been made based on the effective BCS Hamiltonian; however,
their experimental verification requires the preparation of a suitable excited
state of the Hubbard model along a twofold constraint: (i) a sufficiently
nonadiabatic ramping scheme is essential to excite the nonequilibrium dynamics,
and (ii) overheating beyond the critical temperature of superconductivity must
be avoided. For commonly discussed interaction ramps there is no clear
separation of the corresponding energy scales. Here we show that the matching
of both conditions is simplified by the intrinsic relaxation behavior of
ultracold fermionic systems: For the particular example of a linear ramp we
examine the transient regime of prethermalization [M. Moeckel and S. Kehrein,
Phys. Rev. Lett. 100, 175702 (2008)] under the crossover from sudden to
adiabatic switching using Keldysh perturbation theory. A real-time analysis of
the momentum distribution exhibits a temporal separation of an early energy
relaxation and its later thermalization by scattering events. For long but
finite ramping times this separation can be large. In the prethermalization
regime the momentum distribution resembles a zero temperature Fermi liquid as
the energy inserted by the ramp remains located in high energy modes. Thus
ultracold fermions prove robust to heating which simplifies the observation of
nonequilibrium BCS dynamics in optical lattices.Comment: 27 pages, 8 figures Second version with small modifications in
section
A new actinic flux 4?-spectroradiometer: Instrument design and application to clear sky and broken cloud conditions
International audienceA new 4p-spectroradiometer was developed for measuring actinic flux especially under cloudy conditions based on a fixed grating imaging spectrograph and a CCD-detector leading to a simultaneous measurement of the spectrum. The new instrument incorporates a novel optical head with a 4p-field of view independent of angle of incidence. Comparisons with the actinic flux spectroradiometer of the Institute of Atmospheric Chemistry of Forschungszentrum Jülich showed a very good agreement within the limit of the uncertainties of the two instruments. Our spectroradiometer was applied to investigate the effects of broken clouds on the actinic flux and photolysis frequencies on the ground during the BERLIOZ campaign. Reductions as well as enhancements compared to the clear sky case were seen, both effects are larger in the UV-A than the UV-B spectral region. Furthermore the new instrument was used for simultaneous measurements in different altitudes on a tower to study the transmission and attenuation of actinic flux in low clouds. A correlation of attenuation with the simultaneously measured liquid water content of the cloud was found
Hopping on the Bethe lattice: Exact results for densities of states and dynamical mean-field theory
We derive an operator identity which relates tight-binding Hamiltonians with
arbitrary hopping on the Bethe lattice to the Hamiltonian with nearest-neighbor
hopping. This provides an exact expression for the density of states (DOS) of a
non-interacting quantum-mechanical particle for any hopping. We present
analytic results for the DOS corresponding to hopping between nearest and
next-nearest neighbors, and also for exponentially decreasing hopping
amplitudes. Conversely it is possible to construct a hopping Hamiltonian on the
Bethe lattice for any given DOS. These methods are based only on the so-called
distance regularity of the infinite Bethe lattice, and not on the absence of
loops. Results are also obtained for the triangular Husimi cactus, a recursive
lattice with loops. Furthermore we derive the exact self-consistency equations
arising in the context of dynamical mean-field theory, which serve as a
starting point for studies of Hubbard-type models with frustration.Comment: 14 pages, 9 figures; introduction expanded, references added;
published versio
Variational quantum Monte Carlo calculations for solid surfaces
Quantum Monte Carlo methods have proven to predict atomic and bulk properties
of light and non-light elements with high accuracy. Here we report on the first
variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking
the boundary condition for the simulation from a finite layer geometry, the
Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved
form and evaluated with a two-dimensional Ewald summation technique. The exact
cancellation of all Jellium contributions to the Hamiltonian is ensured. The
many-body trial wave function consists of a Slater determinant with
parameterized localized orbitals and a Jastrow factor with a common two-body
term plus a new confinement term representing further variational freedom to
take into account the existence of the surface. We present results for the
ideal (110) surface of Galliumarsenide for different system sizes. With the
optimized trial wave function, we determine some properties related to a solid
surface to illustrate that VMC techniques provide standard results under full
inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style,
submitted to Phys. Rev.
Shrub and tree growth in southeast Tibet: new information for dendroclimatology
Abstract HKT-ISTP 2013
B
Performance of the EUDET-type beam telescopes
Test beam measurements at the test beam facilities of DESY have been
conducted to characterise the performance of the EUDET-type beam telescopes
originally developed within the EUDET project. The beam telescopes are equipped
with six sensor planes using MIMOSA26 monolithic active pixel devices. A
programmable Trigger Logic Unit provides trigger logic and time stamp
information on particle passage. Both data acquisition framework and offline
reconstruction software packages are available. User devices are easily
integrable into the data acquisition framework via predefined interfaces.
The biased residual distribution is studied as a function of the beam energy,
plane spacing and sensor threshold. Its standard deviation at the two centre
pixel planes using all six planes for tracking in a 6\,GeV
electron/positron-beam is measured to be
(2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of
General Broken Lines are performed to estimate the intrinsic resolution of the
individual pixel planes. The mean intrinsic resolution over the six sensors
used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV
electron/positron beam, the track resolution halfway between the two inner
pixel planes using an equidistant plane spacing of 20\,mm is estimated to
(1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution.
Towards lower beam energies the track resolution deteriorates due to increasing
multiple scattering. Threshold studies show an optimal working point of the
MIMOSA26 sensors at a sensor threshold of between five and six times their RMS
noise. Measurements at different plane spacings are used to calibrate the
amount of multiple scattering in the material traversed and allow for
corrections to the predicted angular scattering for electron beams
Electronic reconstruction at SrMnO3-LaMnO3 superlattice interfaces
We use resonant soft x-ray scattering to study electronic reconstruction at
the interface between the Mott insulator LaMnO3 and the "band" insulator
SrMnO3. Superlattices of these two insulators were shown previously to have
both ferromagnetism and metallic tendencies [Koida et al., Phys. Rev. B 66,
144418 (2002)]. By studying a judiciously chosen superlattice reflection we
show that the interface density of states exhibits a pronounced peak at the
Fermi level, similar to that predicted by Okamoto et al. [Phys. Rev. B 70,
241104(R) (2004)]. The intensity of this peak correlates with the conductivity
and magnetization, suggesting it is the driver of metallic behavior. Our study
demonstrates a general strategy for using RSXS to probe the electronic
properties of heterostructure interfaces.Comment: 4.2 pages, 4 figure
Magnetically asymmetric interfaces in a (LaMnO)/(SrMnO) superlattice due to structural asymmetries
Polarized neutron reflectivity measurements of a ferromagnetic
[(LaMnO)/(SrMnO)] superlattice reveal a modulated
magnetic structure with an enhanced magnetization at the interfaces where
LaMnO was deposited on SrMnO (LMO/SMO). However, the opposite
interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The
magnetic asymmetry arises from the difference in lateral structural roughness
of the two interfaces observed via electron microscopy, with strong
ferromagnetism present at the interfaces that are atomically smooth over tens
of nanometers. This result demonstrates that atomic-scale roughness can
destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure
- …
