5,866 research outputs found
Theory of the waterfall phenomenon in cuprate superconductors
Based on exact diagonalization and variational cluster approximation
calculations we study the relationship between charge transfer models and the
corresponding single band Hubbard models. We present an explanation for the
waterfall phenomenon observed in angle resolved photoemission spectroscopy
(ARPES) on cuprate superconductors. The phenomenon is due to the destructive
interference between the phases of the O2p orbitals belonging to a given
Zhang-Rice singlet and the Bloch phases of the photohole which occurs in
certain regions of k-space. It therefore may be viewed as a direct experimental
visualisation of the Zhang-Rice construction of an effective single band model
for the CuO2 plane.Comment: 11 pages, 9 Postscript figure
Gossip at Work: Unsanctioned Evaluative Talk in Formal School Meetings
This article uses a form of linguistic ethnography to analyze videotaped recordings of gossip that took place during formal school meetings. By comparing this gossip data against existing models of gossip based on data collected in informal settings, we identify eleven new response classes, including four forms of indirectness that operate to cloak gossip under ambiguity, and seven forms of avoidance that change the trajectory of gossip. In doing so, this article makes three larger contributions. First, it opens a new front in research on organizational politics by providing an empirically grounded, conceptually rich vocabulary for analyzing gossip in formal contexts. Second, it contributes to knowledge about social interactions in organizations. By examining gossip talk embedded within a work context, this project highlights the nexus between structure, agency, and interaction. Third, it contributes to understandings of gossip in general. By examining gossip in a context previously unexamined, this project provides analytical leverage for theorizing conditions under which gossip is likely and when it will take various forms
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control System
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control
System The roots of ATLAS (Argonne Tandem-Linac Accelerator System) date back
to the early 1960s. Located at the Argonne National Laboratory, the accelerator
has been designated a National User Facility, which focuses primarily on
heavy-ion nuclear physics. Like the accelerator it services, the control system
has been in a constant state of evolution. The present real-time portion of the
control system is based on the commercial product Vsystem [1]. While Vsystem
has always been capable of distributed I/O processing, the latest offering of
this product provides for the use of relatively inexpensive PC hardware and
software. This paper reviews the status of the ATLAS control system, and
describes first experiences with PC distributed I/O.Comment: ICALEPCS 2001 Conference, PSN WEAP027, 3 pages, 1 figur
Spectral density for a hole in an antiferromagnetic stripe phase
Using variational trial wave function based on the string picture we study
the motion of a single mobile hole in the stripe phase of the doped
antiferromagnet. The holes within the stripes are taken to be static, the
undoped antiferromagnetic domains in between the hole stripes are assumed to
have alternating staggered magnetization, as is suggested by neutron scattering
experiments. The system is described by the t-t'-t''-J model with realistic
parameters and we compute the single particle spectral density.Comment: RevTex-file, 9 PRB pages with 15 .eps and .gif files. To appear in
PRB. Hardcopies of figures (or the entire manuscript) can be obtained by
e-mail request to: [email protected]
Excitation spectrum of the homogeneous spin liquid
We discuss the excitation spectrum of a disordered, isotropic and
translationally invariant spin state in the 2D Heisenberg antiferromagnet. The
starting point is the nearest-neighbor RVB state which plays the role of the
vacuum of the theory, in a similar sense as the Neel state is the vacuum for
antiferromagnetic spin wave theory. We discuss the elementary excitations of
this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1
excited dimers which must be modeled by bond Bosons. We derive an effective
Hamiltonian describing the excited dimers which is formally analogous to spin
wave theory. Condensation of the bond-Bosons at zero temperature into the state
with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering.
The latter is a key ingredient for a microscopic interpretation of Zhang's
SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of
figures (or the entire manuscript) can be obtained by e-mail request to:
[email protected]
Landau mapping and Fermi liquid parameters of the 2D t-J model
We study the momentum distribution function n(k) in the 2D t-J model on small
clusters by exact diagonalization. We show that n(k) can be decomposed
systematically into two components with Bosonic and Fermionic doping
dependence. The Bosonic component originates from the incoherent motion of
holes and has no significance for the low energy physics. For the Fermionic
component we exlicitely perform the one-to-one Landau mapping between the low
lying eigenstates of the t-J model clusters and those of an equivalent system
of spin-1/2 quasiparticles. This mapping allows to extract the quasiparticle
dispersion, statistics, and Landau parameters. The results show conclusively
that the 2D t-J model for small doping is a Fermi liquid with a `small' Fermi
surface and a moderately strong attractive interaction between the
quasiparticles.Comment: Revtex file, 5 pages with 5 embedded eps-files, hardcopies of figures
(or the entire manuscript) can be obtained by e-mail request to:
[email protected]
Coarse-grained simulations of flow-induced nucleation in semi-crystalline polymers
We perform kinetic Monte Carlo simulations of flow-induced nucleation in
polymer melts with an algorithm that is tractable even at low undercooling. The
configuration of the non-crystallized chains under flow is computed with a
recent non-linear tube model. Our simulations predict both enhanced nucleation
and the growth of shish-like elongated nuclei for sufficiently fast flows. The
simulations predict several experimental phenomena and theoretically justify a
previously empirical result for the flow-enhanced nucleation rate. The
simulations are highly pertinent to both the fundamental understanding and
process modeling of flow-induced crystallization in polymer melts.Comment: 17 pages, 6 eps figure
- …
