1,077 research outputs found

    Ohio Farm Household Longitudinal Study

    Get PDF

    Environmental changes and radioactive tracers

    Get PDF

    Organization and performance of Ohio farm operations in 1990

    Get PDF

    Ohio Farm Household Income and Financial Condition

    Get PDF

    Numerical optimization of integrating cavities for diffraction-limited millimeter-wave bolometer arrays

    Get PDF
    Far-infrared to millimeter-wave bolometers designed to make astronomical observations are typically encased in integrating cavities at the termination of feedhorns or Winston cones. This photometer combination maximizes absorption of radiation, enables the absorber area to be minimized, and controls the directivity of absorption, thereby reducing susceptibility to stray light. In the next decade, arrays of hundreds of silicon nitride micromesh bolometers with planar architectures will be used in ground-based, suborbital, and orbital platforms for astronomy. The optimization of integrating cavity designs is required for achieving the highest possible sensitivity for these arrays. We report numerical simulations of the electromagnetic fields in integrating cavities with an infinite plane-parallel geometry formed by a solid reflecting backshort and the back surface of a feedhorn array block. Performance of this architecture for the bolometer array camera (Bolocam) for cosmology at a frequency of 214 GHz is investigated. We explore the sensitivity of absorption efficiency to absorber impedance and backshort location and the magnitude of leakage from cavities. The simulations are compared with experimental data from a room-temperature scale model and with the performance of Bolocam at a temperature of 300 mK. The main results of the simulations for Bolocam-type cavities are that (1) monochromatic absorptions as high as 95% are achievable with <1% cross talk between neighboring cavities, (2) the optimum absorber impedances are 400 Ω/sq, but with a broad maximum from ~150 to ~700 Ω/sq, and (3) maximum absorption is achieved with absorber diameters ≥1.5λ. Good general agreement between the simulations and the experiments was found

    Asymmetries in the Value of Existence

    Get PDF
    According to asymmetric comparativism, it is worse for a person to exist with a miserable life than not to exist, but it is not better for a person to exist with a happy life than not to exist. My aim in this paper is to explain how asymmetric comparativism could possibly be true. My account of asymmetric comparativism begins with a different asymmetry, regarding the (dis)value of early death. I offer an account of this early death asymmetry, appealing to the idea of conditional goods, and generalize it to explain how asymmetric comparativism could possibly be true. I also address the objection that asymmetric comparativism has unacceptably antinatalist implications

    A Search for Cosmic Microwave Background Anisotropies on Arcminute Scales with Bolocam

    Get PDF
    We have surveyed two science fields totaling one square degree with Bolocam at 2.1 mm to search for secondary CMB anisotropies caused by the Sunyaev- Zel'dovich effect (SZE). The fields are in the Lynx and Subaru/XMM SDS1 fields. Our survey is sensitive to angular scales with an effective angular multipole of l_eff = 5700 with FWHM_l = 2800 and has an angular resolution of 60 arcseconds FWHM. Our data provide no evidence for anisotropy. We are able to constrain the level of total astronomical anisotropy, modeled as a flat bandpower in C_l, with frequentist 68%, 90%, and 95% CL upper limits of 590, 760, and 830 uKCMB^2. We statistically subtract the known contribution from primary CMB anisotropy, including cosmic variance, to obtain constraints on the SZE anisotropy contribution. Now including flux calibration uncertainty, our frequentist 68%, 90% and 95% CL upper limits on a flat bandpower in C_l are 690, 960, and 1000 uKCMB^2. When we instead employ the analytic spectrum suggested by Komatsu and Seljak (2002), and account for the non-Gaussianity of the SZE anisotropy signal, we obtain upper limits on the average amplitude of their spectrum weighted by our transfer function of 790, 1060, and 1080 uKCMB^2. We obtain a 90% CL upper limit on sigma8, which normalizes the power spectrum of density fluctuations, of 1.57. These are the first constraints on anisotropy and sigma8 from survey data at these angular scales at frequencies near 150 GHz.Comment: 68 pages, 17 figures, 2 tables, accepted for publication in Ap

    Towards automating underwater measurement of fish length: a comparison of semi-automatic and manual stereo–video measurements

    Get PDF
    Underwater stereo–video systems are widely used for counting and measuring fish in aquaculture, fisheries, and conservation management. Length measurements are generated from stereo–video recordings by a software operator using a mouse to locate the head and tail of a fish in synchronized pairs of images. This data can be used to compare spatial and temporal changes in the mean length and biomass or frequency distributions of populations of fishes. Since the early 1990s stereo–video has also been used for measuring the lengths of fish in aquaculture for quota and farm management. However, the costs of the equipment, software, the time, and salary costs involved in post processing imagery manually and the subsequent delays in the availability of length information inhibit the adoption of this technology. We present a semi-automatic method for capturing stereo–video measurements to estimate the lengths of fish. We compare the time taken to make measurements of the same fish measured manually from stereo–video imagery to that measured semi-automatically. Using imagery recorded during transfers of Southern Bluefin Tuna (SBT) from tow cages to grow out cages, we demonstrate that the semi-automatic algorithm developed can obtain fork length measurements with an error of less than 1% of the true length and with at least a sixfold reduction in operator time in comparison to manual measurements. Of the 22 138 SBT recorded we were able to measure 52.6% (11 647) manually and 11.8% (2614) semi-automatically. For seven of the eight cage transfers recorde,d there were no statistical differences in the mean length, weight, or length frequency between manual and semi-automatic measurements. When the data were pooled across the eight cage transfers, there was no statistical difference in mean length or weight between the stereo–video-based manual and semi-automated measurements. Hence, the presented semi-automatic system can be deployed to significantly reduce the cost involved in adoption of stereo–video technology

    Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease-activated receptor-2

    Get PDF
    Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that cleave PAR2 at different sites to activate distinct signalling pathways. Although PAR2 is a therapeutic target for inflammatory and painful diseases, the divergent mechanisms of proteolytic activation complicate the development of therapeutically useful antagonists

    A Fluctuation Analysis of the Bolocam 1.1mm Lockman Hole Survey

    Full text link
    We perform a fluctuation analysis of the 1.1mm Bolocam Lockman Hole Survey, which covers 324 square arcmin to a very uniform point source-filtered RMS noise level of 1.4 mJy/beam. The fluctuation analysis has the significant advantage of utilizing all of the available data. We constrain the number counts in the 1-10 mJy range, and derive significantly tighter constraints than in previous work: the power-law index is 2.7 (+0.18, -0.15), while the amplitude is equal to 1595 (+85,-238) sources per mJy per square degree, or N(>1 mJy) = 940 (+50,-140) sources/square degree (95% confidence). Our results agree extremely well with those derived from the extracted source number counts by Laurent et al (2005). Our derived normalization is about 2.5 times smaller than determined by MAMBO at 1.2mm by Greve et al (2004). However, the uncertainty in the normalization for both data sets is dominated by the systematic (i.e., absolute flux calibration) rather than statistical errors; within these uncertainties, our results are in agreement. We estimate that about 7% of the 1.1mm background has been resolved at 1 mJy.Comment: To appear in the Astrophysical Journal; 22 pages, 9 figure
    corecore