3,240 research outputs found
Response versus Chain Length of Alkanethiol-Capped Au Nanoparticle Chemiresistive Chemical Vapor Sensors
Au nanoparticles capped with a homologous series of straight chain alkanethiols (containing 4−11 carbons in length) have been investigated as chemiresistive organic vapor sensors. The series of alkanethiols was used to elucidate the mechanisms of vapor detection by such capped nanoparticle chemiresistive films and to highlight the molecular design principles that govern enhanced detection. The thiolated Au nanoparticle chemiresistors demonstrated rapid and reversible responses to a set of test vapors (n-hexane, n-heptane, n-octane, iso-octane, cyclohexane, toluene, ethyl acetate, methanol, ethanol, isopropanol, and 1-butanol) that possessed a variety of analyte physicochemical properties. The resistance sensitivity to nonpolar and aprotic polar vapors systematically increased as the chain length of the capping reagent increased. Decreases in the nanoparticle film resistances, which produced negative values of the differential resistance response, were observed upon exposure of the sensor films to alcohol vapors. The response signals became more negative with higher alcohol vapor concentrations, producing negative values of the sensor sensitivity. Sorption data measured on Au nanoparticle chemiresistor films using a quartz crystal microbalance allowed for the measurement of the partition coefficients of test vapors in the Au nanoparticle films. This measurement assumed that analyte sorption only occurred at the organic interface and not the surface of the Au core. Such an assumption produced partition coefficient values that were independent of the length of the ligand. Furthermore, the value of the partition coefficient was used to obtain the particle-to-particle interfacial effective dielectric constant of films upon exposure to analyte vapors. The values of the dielectric constant upon exposure to alcohol vapors suggested that the observed resistance response changes observed were not significantly influenced by this dielectric change, but rather were primarily influenced by morphological changes and by changes in the interparticle spacing
Mentum: Encrypted, Knowledge-Based Modalities
Unified low-energy communication have led to many theoretical advances, including linked lists and wide-area networks. Even though such a hypothesis at first glance seems unexpected, it fell in line with our expectations. In our research, we prove the development of von Neumann machines, demonstrates the intuitive importance of networking. Here, we examine how robots can be applied to the extensive unification of Byzantine fault tolerance and superblocks
The effect of certain packaging and storage treatments on the acceptability of frozen beef
Digitized 2007 AES.Includes bibliographical references (pages 31-32)
Spatiotemporal Path-Matching for Comparisons Between Ground- Based and Satellite Lidar Measurements
The spatiotemporal sampling differences between ground-based and satellite lidar data can contribute to significant errors for direct measurement comparisons. Improvement in sample correspondence is examined by the use of radiosonde wind velocity to vary the time average in ground-based lidar data to spatially match coincident satellite lidar measurements. Results are shown for the 26 February 2004 GLAS/ICESat overflight of a ground-based lidar stationed at NASA GSFC. Statistical analysis indicates that improvement in signal correlation is expected under certain conditions, even when a ground-based observation is mismatched in directional orientation to the satellite track
Study of muons near shower cores at sea level using the E594 neutrino detector
The E594 neutrino detector has been used to study the lateral distribution of muons of energy 3 GeV near shower cores. The detector consists of a 340 ton fine grain calorimeter with 400,000 cells of flash chamber and dimensions of 3.7 m x 20 m x 3.7 m (height). The average density in the calorimeter is 1.4 gm/sq cm, and the average Z is 21. The detector was triggered by four 0.6 sq m scintillators placed immediately on the top of the calorimeter. The trigger required at least two of these four counters. The accompanying extensive air showers (EAS) was sampled by 14 scintillation counters located up to 15 m from the calorimeter. Several off line cuts have been applied to the data. Demanding five particles in at least two of the trigger detectors, a total of 20 particles in all of them together, and an arrival angle for the shower 450 deg reduced the data sample to 11053 events. Of these in 4869 cases, a computer algorithm found at least three muons in the calorimeter
Visual preferences for grades of retail beef cuts : a study conducted in metropolitan St. Louis, 1954
This bulletin reports on Department of Agricultural Economics Research Project 96, 'Meat Preferences', Animal Husbandry Project 5, and Home Economics Project 109--P. [2].Digitized 2007 AES.Includes bibliographical references (page 67)
Consumer preference for beef in relation to finish
This bulletin reports on projects in the departments of Animal Husbandry, Agricultural Economics, and Home Economics RM-II-31, entitled, 'Consumer Acceptance of Meat and Meat Products'--P. [2].Digitized 2007 AES
The Algorithm Theoretical Basis Document for the GLAS Atmospheric Data Products
The purpose of this document is to present a detailed description of the algorithm theoretical basis for each of the GLAS data products. This will be the final version of this document. The algorithms were initially designed and written based on the authors prior experience with high altitude lidar data on systems such as the Cloud and Aerosol Lidar System (CALS) and the Cloud Physics Lidar (CPL), both of which fly on the NASA ER-2 high altitude aircraft. These lidar systems have been employed in many field experiments around the world and algorithms have been developed to analyze these data for a number of atmospheric parameters. CALS data have been analyzed for cloud top height, thin cloud optical depth, cirrus cloud emittance (Spinhirne and Hart, 1990) and boundary layer depth (Palm and Spinhirne, 1987, 1998). The successor to CALS, the CPL, has also been extensively deployed in field missions since 2000 including the validation of GLAS and CALIPSO. The CALS and early CPL data sets also served as the basis for the construction of simulated GLAS data sets which were then used to develop and test the GLAS analysis algorithms
- …
