387 research outputs found
Viscosity Dependence of the Folding Rates of Proteins
The viscosity dependence of the folding rates for four sequences (the native
state of three sequences is a beta-sheet, while the fourth forms an
alpha-helix) is calculated for off-lattice models of proteins. Assuming that
the dynamics is given by the Langevin equation we show that the folding rates
increase linearly at low viscosities \eta, decrease as 1/\eta at large \eta and
have a maximum at intermediate values. The Kramers theory of barrier crossing
provides a quantitative fit of the numerical results. By mapping the simulation
results to real proteins we estimate that for optimized sequences the time
scale for forming a four turn \alpha-helix topology is about 500 nanoseconds,
whereas the time scale for forming a beta-sheet topology is about 10
microseconds.Comment: 14 pages, Latex, 3 figures. One figure is also available at
http://www.glue.umd.edu/~klimov/seq_I_H.html, to be published in Physical
Review Letter
State-dependent diffusion: thermodynamic consistency and its path integral formulation
The friction coefficient of a particle can depend on its position as it does
when the particle is near a wall. We formulate the dynamics of particles with
such state-dependent friction coefficients in terms of a general Langevin
equation with multiplicative noise, whose evaluation requires the introduction
of specific rules. Two common conventions, the Ito and the Stratonovich,
provide alternative rules for evaluation of the noise, but other conventions
are possible. We show the requirement that a particle's distribution function
approach the Boltzmann distribution at long times dictates that a drift term
must be added to the Langevin equation. This drift term is proportional to the
derivative of the diffusion coefficient times a factor that depends on the
convention used to define the multiplicative noise. We explore the consequences
of this result in a number examples with spatially varying diffusion
coefficients. We also derive path integral representations for arbitrary
interpretation of the noise, and use it in a perturbative study of correlations
in a simple system.Comment: 18 pages, 8 figures, Accepted to PR
Like-charge attraction through hydrodynamic interaction
We demonstrate that the attractive interaction measured between like-charged
colloidal spheres near a wall can be accounted for by a nonequilibrium
hydrodynamic effect. We present both analytical results and Brownian dynamics
simulations which quantitatively capture the one-wall experiments of Larsen and
Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
Influence of Hydrodynamic Interactions on Mechanical Unfolding of Proteins
We incorporate hydrodynamic interactions in a structure-based model of
ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak
force when stretching the protein at constant speed, especially at larger
speeds. Hydrodynamic interactions are also shown to facilitate unfolding at
constant force and inhibit stretching by fluid flows.Comment: to be published in Journal of Physics: Condensed Matte
A unified approach for the solution of the Fokker-Planck equation
This paper explores the use of a discrete singular convolution algorithm as a
unified approach for numerical integration of the Fokker-Planck equation. The
unified features of the discrete singular convolution algorithm are discussed.
It is demonstrated that different implementations of the present algorithm,
such as global, local, Galerkin, collocation, and finite difference, can be
deduced from a single starting point. Three benchmark stochastic systems, the
repulsive Wong process, the Black-Scholes equation and a genuine nonlinear
model, are employed to illustrate the robustness and to test accuracy of the
present approach for the solution of the Fokker-Planck equation via a
time-dependent method. An additional example, the incompressible Euler
equation, is used to further validate the present approach for more difficult
problems. Numerical results indicate that the present unified approach is
robust and accurate for solving the Fokker-Planck equation.Comment: 19 page
Ligand-Receptor Interactions
The formation and dissociation of specific noncovalent interactions between a
variety of macromolecules play a crucial role in the function of biological
systems. During the last few years, three main lines of research led to a
dramatic improvement of our understanding of these important phenomena. First,
combination of genetic engineering and X ray cristallography made available a
simultaneous knowledg of the precise structure and affinity of series or
related ligand-receptor systems differing by a few well-defined atoms. Second,
improvement of computer power and simulation techniques allowed extended
exploration of the interaction of realistic macromolecules. Third, simultaneous
development of a variety of techniques based on atomic force microscopy,
hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or
flexible transducers yielded direct experimental information of the behavior of
single ligand receptor bonds. At the same time, investigation of well defined
cellular models raised the interest of biologists to the kinetic and mechanical
properties of cell membrane receptors. The aim of this review is to give a
description of these advances that benefitted from a largely multidisciplinar
approach
Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations
Colloidal particles placed in an energy landscape interact with each other, giving rise to complex dynamic behavior that affects the ability to process and manipulate suspensions of these particles. Propagating across scales ranging from the local behavior of 10's of particles to non-local behavior encompassing >10[superscript 6] particles, these particle interactions are pervasive and challenging to describe quantitatively, especially in the confined environments typical of microfluidic devices. To better understand the effects of particle interactions in this context, we have performed experiments and simulations involving a simple microfluidic device in which hydrodynamic and electrostatic forces are leveraged to concentrate and separate particle mixtures. These investigations reveal the mechanisms underlying the dynamic patterns formed by micron-scale particles as they impinge on a dielectrophoretic force barrier: their tendency to aggregate and recirculate under constant operating conditions, and to reorganize when the operating conditions are changed. The emergent behaviors of these ensembles of interacting particles exhibit features of dynamical frustration and cooperativity that suggest non-intuitive strategies for concentrating and sorting suspensions. Finally, we present a simple analytic model based on hydrodynamic coupling that captures important features of strongly interacting particle suspensions.National Institutes of Health (U.S.) (Grant EB005753)National Science Foundation (U.S.). Instrument Development for Biological Research (Grant DBI-0852654)Singapore-MIT Allianc
Cryptocurrencies and blockchain as attributes of the new economy
In the paper we will consider the features of the use of cryptocurrencies and blockchain in the modern world. Taking into account the development of technology and society, cryptocurrencies are becoming more and more in demand nowadays
Chaperone-assisted translocation of a polymer through a nanopore
Using Langevin dynamics simulations, we investigate the dynamics of
chaperone-assisted translocation of a flexible polymer through a nanopore. We
find that increasing the binding energy between the chaperone and
the chain and the chaperone concentration can greatly improve the
translocation probability. Particularly, with increasing the chaperone
concentration a maximum translocation probability is observed for weak binding.
For a fixed chaperone concentration, the histogram of translocation time
has a transition from long-tailed distribution to Gaussian distribution with
increasing . rapidly decreases and then almost saturates with
increasing binding energy for short chain, however, it has a minimum for longer
chains at lower chaperone concentration. We also show that has a minimum
as a function of the chaperone concentration. For different , a
nonuniversal dependence of on the chain length is also observed.
These results can be interpreted by characteristic entropic effects for
flexible polymers induced by either crowding effect from high chaperone
concentration or the intersegmental binding for the high binding energy.Comment: 10 pages, to appear in J. Am. Chem. So
- …
