7 research outputs found

    Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor.

    Get PDF
    This paper describes the development of a polyimide/SU-8 catheter-tip MEMS gauge pressure sensor. Finite element analysis was used to investigate critical parameters, impacting on the device design and sensing characteristics. The sensing element of the device was fabricated by polyimide-based micromachining on a flexible membrane, using embedded thin-film metallic wires as piezoresistive elements. A chamber containing this flexible membrane was sealed using an adapted SU-8 bonding technique. The device was evaluated experimentally and its overall performance compared with a commercial silicon-based pressure sensor. Furthermore, the device use was demonstrated by measuring blood pressure and heart rate in vivo

    Separation of blood microsamples by exploiting sedimentation at the microscale.

    Get PDF
    Microsample analysis is highly beneficial in blood-based testing where cutting-edge bioanalytical technologies enable the analysis of volumes down to a few tens of microliters. Despite the availability of analytical methods, the difficulty in obtaining high-quality and standardized microsamples at the point of collection remains a major limitation of the process. Here, we detail and model a blood separation principle which exploits discrete viscosity differences caused by blood particle sedimentation in a laminar flow. Based on this phenomenon, we developed a portable capillary-driven microfluidic device that separates blood microsamples collected from finger-pricks and delivers 2 µL of metered serum for bench-top analysis. Flow cytometric analysis demonstrated the high purity of generated microsamples. Proteomic and metabolomic analyses of the microsamples of 283 proteins and 1351 metabolite features was consistent with samples generated via a conventional centrifugation method. These results were confirmed by a clinical study scrutinising 8 blood markers in obese patients

    Influence of the materials magnetic state on the accurate determination of the magnetocaloric effect

    No full text
    In this paper, we report a detailed study of the magnetocaloric effect (MCE) in different first order magnetic transition (FOMT) materials with different situation of the magnetic state (magnetic order). For this purpose, R-Co2, MnAs based compounds were considered in this study. The MCE is discussed in terms of Maxwell relation (MR) and Clausius-Clapeyron (C-C) equation. The deviation observed between both methods is discussed and analyzed. On the other hand, practically all the reported data of the MCE in the literature are associated to the applied external magnetic field and have not been corrected taking into account the demagnetization effect related to the materials shape. The obtained results demonstrate that this phenomenon can alter drastically the MCE values by cancelling out a large part of the external field, resulting in spurious values of the measured MCE. The effect of the demagnetization field on the magnetocaloric performances is also the subject of this paper

    A pre-industrial magnetic cooling system for room temperature application

    No full text
    In this paper, a new type of reciprocating magnetic refrigerator working with high remanence permanent magnets as the source of the magnetic field is presented. The simulated and measured magnetic field at the machine air gap is about 1.45 T. Initially, gadolinium metal (Gd) was used as the magnetocaloric refrigerant. Its magnetocaloric performances and its quality were checked experimentally in a developed test bench. To attain high values of temperature difference between the hot and the cold sources (temperature span), a new design of the Active Magnetic Refrigeration (AMR) cycle was implemented. However, in order to reduce the energy consumption and then increase the thermodynamic performances of the magnetic system, a special configuration of the magnetocaloric materials is developed. The numerical results of the applied magnetic forces on the new configuration are given and analysed. The developed machine is designed to produce a cooling power between 80 and 100 W with a temperature span larger than 20 K. The obtained results demonstrate that magnetic cooling is a promising alternative to replace traditional systems

    Separation of blood microsamples by exploiting sedimentation at the microscale

    No full text
    Microsample analysis is highly beneficial in blood-based testing where cutting-edge bioanalytical technologies enable the analysis of volumes down to a few tens of microliters. Despite the availability of analytical methods, the difficulty in obtaining high-quality and standardized microsamples at the point of collection remains a major limitation of the process. Here, we detail and model a blood separation principle which exploits discrete viscosity differences caused by blood particle sedimentation in a laminar flow. Based on this phenomenon, we developed a portable capillary-driven microfluidic device that separates blood microsamples collected from finger-pricks and delivers 2 µL of metered serum for bench-top analysis. Flow cytometric analysis demonstrated the high purity of generated microsamples. Proteomic and metabolomic analyses of the microsamples of 283 proteins and 1351 metabolite features was consistent with samples generated via a conventional centrifugation method. These results were confirmed by a clinical study scrutinising 8 blood markers in obese patients

    Interpol review of fingermarks and other body impressions 2016–2019

    No full text
    corecore