1,849 research outputs found
Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius
We have carried out optical-absorption and reflectance measurements at room
temperature in single crystals of AWO4 tungstates (A = Ba, Ca, Cd, Cu, Pb, Sr,
and Zn). From the experimental results their band-gap energy has been
determined to be 5.26 eV (BaWO4), 5.08 eV (SrWO4), 4.94 eV (CaWO4), 4.15 eV
(CdWO4), 3.9-4.4 eV (ZnWO4), 3.8-4.2 eV (PbWO4), and 2.3 eV (CuWO4). The
results are discussed in terms of the electronic structure of the studied
tungstates. It has been found that those compounds where only the s electron
states of the A2+ cation hybridize with the O 2p and W 5d states (e.g BaWO4)
have larger band-gap energies than those where also p, d, and f states of the
A2+ cation contribute to the top of the valence band and the bottom of the
conduction band (e.g. PbWO4). The results are of importance in view of the
large discrepancies existent in prevoiusly published data.Comment: 16 pages, 3 figures, 1 tabl
High-pressure study of substrate material ScAlMgO4
We report on the structural properties of ScAlMgO4 studied under
quasi-hydrostatic pressure using synchrotron high-pressure x-ray diffraction up
to 40 GPa. We also report on single-crystal studies of ScAlMgO4 performed at
300 K and 100 K. We found that the low-pressure phase remains stable up to 24
GPa. At 28 GPa, we detected a reversible phase transformation. The
high-pressure phase is assigned to a monoclinic distortion of the low-pressure
phase. No additional phase transition is observed up to 40 GPa. In addition,
the equation of state, compressibility tensor, and thermal expansion
coefficients of ScAlMgO4 are determined. The bulk modulus of ScAlMgO4 is found
to be 143(8) GPa, with a strong compressibility anisotropy. For the trigonal
low-pressure phase, the compressibility along the c-axis is twice than
perpendicular one. A perfect lattice match with ZnO is retained under pressure
in the pressure range of stability of wurtzite ZnO.Comment: 22 pages, 5 figures, 4 tables, 24 reference
Combined photo- and electroreflectance of multijunction solar cells enabled by subcell electric coupling
Electric coupling between subcells of a monolithically grown multijunction
solar cell in short circuit allows their simultaneous and independent
characterization by means of photo- and electroreflectance. The photovoltage
generated by selective absorption of the pump beam in a given subcell during
photoreflectance measurements results in reverse biasing the complementary
subunits at the modulation frequency set on the pump illumination. Such voltage
bias modulation acts then as external perturbation on the complementary
subcells. The spectral separation of the different subcell absorption ranges
permits the probe beam to record in a single spectrum the response of the
complete device as a combination of photo- and electroreflectance, thereby
providing access for diagnosis of subcells on an individual basis. This form of
modulation spectroscopy is demonstrated on a GaInP/GaAs tandem solar cell.Comment: 5 pages, 4 figures. This article has been accepted by Appl. Phys.
Lett. After it is published, it will be found at
https://doi.org/10.1063/1.506260
Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides
We have investigated by means of high-pressure x-ray diffraction the
structural stability of Pd2Mo3N, Ni2Mo3C0.52N0.48, Co3Mo3C0.62N0.38, and
Fe3Mo3C. We have found that they remain stable in their ambient-pressure cubic
phase at least up to 48 GPa. All of them have a bulk modulus larger than 330
GPa, being the least compressible material Fe3Mo3C, B0 = 374(3) GPa. In
addition, apparently a reduction of compressibility is detected as the carbon
content increased. The equation of state for each material is determined. A
comparison with other refractory materials indicates that interstitial nitrides
and carbides behave as ultra-incompressible materials.Comment: 14 pages, 3 figures, 1 tabl
Coccolithophore biodiversity controls carbonate export in the Southern Ocean
Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.info:eu-repo/semantics/publishedVersio
Застосування визначеного інтегралу до розв’язування економічних задач
The aim of the present work was to study the influence of the stress on the electrode potential of the austenitic stainless steel301LN using Scanning Kelvin Probe (SKP). It was found that elastic deformation reversibly ennobles the potential whereas plasticdeformation decreases the potential in both tensile and compressive deformation mode and this decrease is retained even 24 h afterremoval of the load. To interpret the stress effects, different surface preparations were used and the composition and thickness ofthe passive film were determined by GDOES. Slip steps formed due to plastic deformation were observed using AFM. The effect ofplastic strain on the potential is explained by the formation of dislocations, which creates more a defective passive film.QC 20160516</p
High-pressure structural investigation of several zircon-type orthovanadates
Room temperature angle-dispersive x-ray diffraction measurements on
zircon-type EuVO4, LuVO4, and ScVO4 were performed up to 27 GPa. In the three
compounds we found evidence of a pressure-induced structural phase
transformation from zircon to a scheelite-type structure. The onset of the
transition is near 8 GPa, but the transition is sluggish and the low- and
high-pressure phases coexist in a pressure range of about 10 GPa. In EuVO4 and
LuVO4 a second transition to a M-fergusonite-type phase was found near 21 GPa.
The equations of state for the zircon and scheelite phases are also determined.
Among the three studied compounds, we found that ScVO4 is less compressible
than EuVO4 and LuVO4, being the most incompressible orthovanadate studied to
date. The sequence of structural transitions and compressibilities are
discussed in comparison with other zircon-type oxides.Comment: 34 pages, 2 Tables, 11 Figure
Large T Antigen-Specific Cytotoxic T Cells Protect Against Dendritic Cell Tumors through Perforin-Mediated Mechanisms Independent of CD4 T Cell Help.
Our newly generated murine tumor dendritic cell (MuTuDC) lines, generated from tumors developing in transgenic mice expressing the simian virus 40 large T antigen (SV40LgT) and GFP under the DC specific promoter CD11c, reproduce the phenotypic and functional properties of splenic wild type CD8α(+) conventional DCs. They have an immature phenotype with low co-stimulation molecule expression (CD40, CD70, CD80, and CD86) that is upregulated after activation with toll-like receptor ligands. We observed that after transfer into syngeneic C57BL/6 mice, MuTuDC lines were quickly rejected. Tumors grew efficiently in large T transgene-tolerant mice. To investigate the immune response toward the large T antigen that leads to rejection of the MuTuDC lines, they were genetically engineered by lentiviral transduction to express luciferase and tested for the induction of DC tumors after adoptive transfer in various gene deficient recipient mice. Here, we document that the MuTuDC line was rejected in C57BL/6 mice by a CD4 T cell help-independent, perforin-mediated CD8 T cell response to the SV40LgT without pre-activation or co-injection of adjuvants. Using depleting anti-CD8β antibodies, we were able to induce efficient tumor growth in C57BL/6 mice. These results are important for researchers who want to use the MuTuDC lines for in vivo studies
Relación entre las concentraciones de polen aéreo de Artemisia, Chenopodiaceae, Plantago y Taraxacum y la prevalencia de polinosis en estudiantes universitarios de León
XV lnternational A.P.L.E. Symposium of Palynolog
- …
