47 research outputs found

    Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls.

    Get PDF
    Determining whether potential causal variants for related diseases are shared can identify overlapping etiologies of multifactorial disorders. Colocalization methods disentangle shared and distinct causal variants. However, existing approaches require independent data sets. Here we extend two colocalization methods to allow for the shared-control design commonly used in comparison of genome-wide association study results across diseases. Our analysis of four autoimmune diseases--type 1 diabetes (T1D), rheumatoid arthritis, celiac disease and multiple sclerosis--identified 90 regions that were associated with at least one disease, 33 (37%) of which were associated with 2 or more disorders. Nevertheless, for 14 of these 33 shared regions, there was evidence that the causal variants differed. We identified new disease associations in 11 regions previously associated with one or more of the other 3 disorders. Four of eight T1D-specific regions contained known type 2 diabetes (T2D) candidate genes (COBL, GLIS3, RNLS and BCAR1), suggesting a shared cellular etiology.MF is funded by the Wellcome Trust (099772). CW and HG are funded by the Wellcome Trust (089989). This work was funded by the JDRF (9–2011–253), the Wellcome Trust (091157) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). ImmunoBase.org is supported by Eli Lilly and Company. We thank the UK Medical Research Council and Wellcome Trust for funding the collection of DNA for the British 1958 Birth Cohort (MRC grant G0000934, WT grant 068545/Z/02). DNA control samples were prepared and provided by S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton. Biotec Cluster M4, the Fidelity Biosciences Research Initiative, Research Foundation Flanders, Research Fund KU Leuven, the Belgian Charcot Foundation, Gemeinntzige Hertie Stiftung, University Zurich, the Danish MS Society, the Danish Council for Strategic Research, the Academy of Finland, the Sigrid Juselius Foundation, Helsinki University, the Italian MS Foundation, Fondazione Cariplo, the Italian Ministry of University and Research, the Torino Savings Bank Foundation, the Italian Ministry of Health, the Italian Institute of Experimental Neurology, the MS Association of Oslo, the Norwegian Research Council, the South–Eastern Norwegian Health Authorities, the Australian National Health and Medical Research Council, the Dutch MS Foundation and Kaiser Permanente. Marina Evangelou is thanked for motivating the investigation of the FASLG association.This is the author accepted manuscript. The final version is available at http://www.nature.com/ng/journal/v47/n7/full/ng.3330.html

    Genome wide screen identifies microsatellite markers associated with acute adverse effects following radiotherapy in cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The response of normal tissues in cancer patients undergoing radiotherapy varies, possibly due to genetic differences underlying variation in radiosensitivity.</p> <p>Methods</p> <p>Cancer patients (n = 360) were selected retrospectively from the RadGenomics project. Adverse effects within 3 months of radiotherapy completion were graded using the National Cancer Institute Common Toxicity Criteria; high grade group were grade 3 or more (n = 180), low grade group were grade 1 or less (n = 180). Pooled genomic DNA (gDNA) (n = 90 from each group) was screened using 23,244 microsatellites. Markers with different inter-group frequencies (Fisher exact test <it>P </it>< 0.05) were analyzed using the remaining pooled gDNA. Silencing RNA treatment was performed in cultured normal human skin fibroblasts.</p> <p>Results</p> <p>Forty-seven markers had positive association values; including one in the <it>SEMA3A </it>promoter region (P = 1.24 × 10<sup>-5</sup>). <it>SEMA3A </it>knockdown enhanced radiation resistance.</p> <p>Conclusions</p> <p>This study identified 47 putative radiosensitivity markers, and suggested a role for <it>SEMA3A </it>in radiosensitivity.</p

    Cohort profile: the German Diabetes Study (GDS)

    Full text link

    Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.

    Get PDF
    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry

    A comparison of two workflows for regulome and transcriptome-based prioritization of genetic variants associated with myocardial mass

    Get PDF
    A typical task arising from main effect analyses in a Genome Wide Association Study (GWAS) is to identify single nucleotide polymorphisms (SNPs), in linkage disequilibrium with the observed signals, that are likely causal variants and the affected genes. The affected genes may not be those closest to associating SNPs. Functional genomics data from relevant tissues are believed to be helpful in selecting likely causal SNPs and interpreting implicated biological mechanisms, ultimately facilitating prevention and treatment in the case of a disease trait. These data are typically used post GWAS analyses to fine-map the statistically significant signals identified agnostically by testing all SNPs and applying a multiple testing correction. The number of tested SNPs is typically in the millions, so the multiple testing burden is high. Motivated by this, in this study we investigated an alternative workflow, which consists in utilizing the available functional genomics data as a first step to reduce the number of SNPs tested for association. We analyzed GWAS on electrocardiographic QRS duration using these two workflows. The alternative workflow identified more SNPs, including some residing in loci not discovered with the typical workflow. Moreover, the latter are corroborated by other reports on QRS duration. This indicates the potential value of incorporating functional genomics information at the onset in GWAS analyses

    Trends in meta-analysis of genetic association studies

    No full text
    The number of published genetic association studies (GASs) is increasing tremendously due to the availability of mapped single-nucleotide polymorphisms (SNPs) and advances in genotyping technologies. A search in HuGENet illustrates the rapid accumulation of evidence for major diseases. Recently, there has been a lot of activity regarding genome-wide association studies (GWASs), and a growing number of forthcoming studies is expected. GASs and GWASs are usually underpowered to detect significant associations, and the varying quality of reporting publications befuddles researchers. A meta-analysis can increase power and provide standards of reporting results. However, the conduct of a meta-analysis of GASs faces a major obstacle, which is the structure and diversity of stored information in databases. Similar problems are expected for GWASs, though the data are not yet publicly available. The development of a Web-based system for the detailed and structured recording of GAS or GWAS data, accompanied by an estimation of the overall genetic risk effects, would enable scientists to keep track of evidence for gene-disease associations
    corecore