22,940 research outputs found

    Stem Cell Therapeutics: Exploring Newer Alternatives to Human Embryonic Stem Cells

    Get PDF
    Stem cells therapeutics has come a long way since stem cells and their potential was discovered for the first time. Intense research into cellular biology of stem cells has revealed that they possess immense potential for curing many human diseases. Research done in last couple of decades revealed that a particular class of stem cells called, “Human embryonic stem cells (HESCs)” possessed exceptional self-renewal and pluripotency properties. There ability to differentiate into specialized cell lineages of all three embryonic germ layers contributed further towards their popularity. However, in recent times HESCs have come under the cross-hairs of critics, politicians and religious groups due to certain technical and ethical concerns related to them. Such problems with HESCs research have forced stem cell researchers to start exploring the prospects of using alternatives to HESCs for regenerative medicine and therapeutics. In the present review, various sources of stem cells have been described, which in near future, have the potential to replace HESCs in regenerative medicine

    Palladium-catalyzed acetylation of arenes.

    Get PDF
    A simple method for the preparation of aryl methyl ketones is reported. The transformation involves the Pd-catalyzed coupling of an acyl anion equivalent, acetyltrimethylsilane, with aryl bromides to afford the corresponding acetylated arenes in synthetically useful yields. The methodology is tolerant of heterocycles and provides a new method for arene functionalization

    Optimal cooperative control synthesis of active displays

    Get PDF
    A technique is developed that is intended to provide a systematic approach to synthesizing display augmentation for optimal manual control in complex, closed-loop tasks. A cooperative control synthesis technique, previously developed to design pilot-optimal control augmentation for the plant, is extended to incorporate the simultaneous design of performance enhancing displays. The technique utilizes an optimal control model of the man in the loop. It is applied to the design of a quickening control law for a display and a simple K/s(2) plant, and then to an F-15 type aircraft in a multi-channel task. Utilizing the closed loop modeling and analysis procedures, the results from the display design algorithm are evaluated and an analytical validation is performed. Experimental validation is recommended for future efforts

    Quantum phase interference (Berry phase) in single-molecule magnets of Mn12

    Full text link
    Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied along the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Mn12 is therefore the second molecular clusters presenting quantum phase interference.Comment: 3 pages, 4 figures, MMM'01 conference (12-16 Nov.

    Spin Tunneling in Magnetic Molecules: Quasisingular Perturbations and Discontinuous SU(2) Instantons

    Full text link
    Spin coherent state path integrals with discontinuous semiclassical paths are investigated with special reference to a realistic model for the magnetic degrees of freedom in the Fe8 molecular solid. It is shown that such paths are essential to a proper understanding of the phenomenon of quenched spin tunneling in these molecules. In the Fe8 problem, such paths are shown to arise as soon as a fourth order anisotropy term in the energy is turned on, making this term a singular perturbation from the semiclassical point of view. The instanton approximation is shown to quantitatively explain the magnetic field dependence of the tunnel splitting, as well as agree with general rules for the number of quenching points allowed for a given value of spin. An accurate approximate formula for the spacing between quenching points is derived

    Isolating CP-violating \gamma ZZ coupling in e+e- \to \gamma Z with transverse beam polarizations

    Full text link
    We revisit the process e+eγZe^+e^- \to \gamma Z at the ILC with transverse beam polarization in the presence of anomalous CP-violating γZZ\gamma Z Z coupling λ1\lambda_1 and γγZ\gamma \gamma Z coupling λ2\lambda_2. We point out that if the final-state spins are resolved, then it becomes possible to fingerprint the anomalous coupling {\rm Re}λ1\lambda_1.90% confidence level limit on {\rm Re}λ1\lambda_1 achievable at ILC with center-of-mass energy of 500 GeV or 800 GeV with realistic initial beam polarization and integrated luminosity is of the order of few times of 10210^{-2} when the helicity of ZZ is used and 10310^{-3} when the helicity of γ\gamma is used. The resulting corrections at quadratic order to the cross section and its influence on these limits are also evaluated and are shown to be small. The benefits of such polarization programmes at the ILC are compared and contrasted for the process at hand. We also discuss possible methods by which one can isolate events with a definite helicity for one of the final-state particles.Comment: 13 pages, 9 figures, using RevTex; v2 is a significantly revised version of v1, and corresponds to the version that has been published in Physical Review
    corecore