452 research outputs found
Foldy-Wouthuysen Transformation for a Spinning Particle with Anomalous Magnetic Moment
We study the Foldy-Wouthuysen transformation for a pseudoclassical particle
with anomalous magnetic moment in an external, stationary electromagnetic
field. We show that the transformation can be expressed in a closed form for
neutral particles in purely electrostatic fields and for neutral and charged
particles in external magnetostatic fields. The explicit expressions of the
diagonalized Hamiltonians are calculated.Comment: 10 page
Spinning particle in an external linearized gravitational wave field
We study the interaction of a scalar and a spinning particle with a coherent
linearized gravitational wave field treated as a classical spin two external
field. The spin degrees of freedom of the spinning particle are described by
skew-commuting variables. We derive the explicit expressions for the
eigenfunctions and the Green's functions of the theory. The discussion is exact
within the approximation of neglecting radiative corrections and we prove that
the result is completely determined by the semiclassical contribution.Comment: 11 page
Local Variational Principle
A generalization of the Gibbs-Bogoliubov-Feynman inequality for spinless
particles is proven and then illustrated for the simple model of a symmetric
double-well quartic potential. The method gives a pointwise lower bound for the
finite-temperature density matrix and it can be systematically improved by the
Trotter composition rule. It is also shown to produce groundstate energies
better than the ones given by the Rayleigh-Ritz principle as applied to the
groundstate eigenfunctions of the reference potentials. Based on this
observation, it is argued that the Local Variational Principle performs better
than the equivalent methods based on the centroid path idea and on the
Gibbs-Bogoliubov-Feynman variational principle, especially in the range of low
temperatures.Comment: 15 pages, 5 figures, one more section adde
Optimization of extraction of drugs containing polyphenols using an innovative technique
The role of polyphenols in human health nowadays is well established and these natural products, found in many plant species, are the active ingredients of drugs, food supplements and cosmetics. Extraction procedure is pivotal to obtain high quality herbal products but paradoxically this factor is often underrated and obsolete techniques are used. In this work we compared the classic and most used method of maceration and an innovative and standardized technique of extraction, Estrattore Naviglio((R)), processing ten common medicinal plants containing polyphenols and for each analysing specific biological markers such as flavonoids, anthocyanosides and caffeic derivatives in addition to total polyphenols content. Estrattore Naviglio((R)) guaranteed a significant improvement of the chemical quality of extracts combining effectiveness with rapidity and reproducibility. In this work we further investigated the optimization of drug extractions by replicating operations varying parameters setting on Estrattore Naviglio((R)) instrument
Quantum Double and Differential Calculi
We show that bicovariant bimodules as defined by Woronowicz are in one to one
correspondence with the Drinfeld quantum double representations. We then prove
that a differential calculus associated to a bicovariant bimodule of dimension
n is connected to the existence of a particular (n+1)--dimensional
representation of the double. An example of bicovariant differential calculus
on the non quasitriangular quantum group E_q(2) is developed. The construction
is studied in terms of Hochschild cohomology and a correspondence between
differential calculi and 1-cocycles is proved. Some differences of calculi on
quantum and finite groups with respect to Lie groups are stressed.Comment: Revised version with added cohomological analysis. 14 pages, plain
te
Two fermion relativistic bound states: hyperfine shifts
We discuss the hyperfine shifts of the Positronium levels in a relativistic
framework, starting from a two fermion wave equation where, in addition to the
Coulomb potential, the magnetic interaction between spins is described by a
Breit term. We write the system of four first order differential equations
describing this model. We discuss its mathematical features, mainly in relation
to possible singularities that may appear at finite values of the radial
coordinate. We solve the boundary value problems both in the singular and non
singular cases and we develop a perturbation scheme, well suited for numerical
computations, that allows to calculate the hyperfine shifts for any level,
according to well established physical arguments that the Breit term must be
treated at the first perturbative order. We discuss our results, comparing them
with the corresponding values obtained from semi-classical expansions.Comment: 16 page
Kinetic energy of solid neon by Monte Carlo with improved Trotter- and finite-size extrapolation
The kinetic energy of solid neon is calculated by a path-integral Monte Carlo
approach with a refined Trotter- and finite-size extrapolation. These accurate
data present significant quantum effects up to temperature T=20 K. They confirm
previous simulations and are consistent with recent experiments.Comment: Text and figures revised for minor corrections (4 pages, 3 figures
included by psfig
Multicanonical Multigrid Monte Carlo
To further improve the performance of Monte Carlo simulations of first-order
phase transitions we propose to combine the multicanonical approach with
multigrid techniques. We report tests of this proposition for the
-dimensional field theory in two different situations. First, we
study quantum tunneling for in the continuum limit, and second, we
investigate first-order phase transitions for in the infinite volume
limit. Compared with standard multicanonical simulations we obtain improvement
factors of several resp. of about one order of magnitude.Comment: 12 pages LaTex, 1 PS figure appended. FU-Berlin preprint FUB-HEP 9/9
Retrieval and classification methods for textured 3D models: a comparative study
International audienceThis paper presents a comparative study of six methods for the retrieval and classification of tex-tured 3D models, which have been selected as representative of the state of the art. To better analyse and control how methods deal with specific classes of geometric and texture deformations, we built a collection of 572 synthetic textured mesh models, in which each class includes multiple texture and geometric modifications of a small set of null models. Results show a challenging, yet lively, scenario and also reveal interesting insights in how to deal with texture information according to different approaches, possibly working in the CIELab as well as in modifications of the RGB colour space
- …
