111 research outputs found

    Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    Get PDF
    In this screening study, biogenic volatile organic compound (BVOC) emissions from intact branches of lodgepole pine (Pinus contorta) trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB), with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site) observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made) at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT) emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs) compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT), with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO) had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late-season MPB survivors, in which they were higher than in newly infested or uninfested trees. Emissions of SQT were significantly higher in the MPB survivors during both mid- and late-season sampling at the low-mortality site. The changes in emissions could have implications for regional air quality and climate through changes in ozone and aerosol distributions, although this study was designed as a preliminary screening effort and not enough individuals were sampled for all of the observed differences to be statistically demonstrated. Despite this, the compelling differences in emissions observed between the sites and individual trees with differing MPB-infestation statuses and the potential impacts these have on regional atmospheric chemistry argue for further research in this topic

    Simulations of the 2004 North American Monsoon: NAMAP2

    Get PDF
    The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.open131

    How Might Recharge Change Under Projected Climate Change in the Western U.S.?

    Full text link
    Although groundwater is a major water resource in the western U.S., little research has been done on the impacts of climate change on groundwater storage and recharge in the West. Here we assess the impact of projected changes in climate on groundwater recharge in the near (2021–2050) and far (2071–2100) future across the western U.S. Variable Infiltration Capacity model was run with RCP 6.0 forcing from 11 global climate models and “subsurface runoff” output was considered as recharge. Recharge is expected to decrease in the West (−5.8 ± 14.3%) and Southwest (−4.0 ± 6.7%) regions in the near future and in the South region (−9.5 ± 24.3%) in the far future. The Northern Rockies region is expected to get more recharge in the near (+5.3 ± 9.2%) and far (+11.8 ± 12.3%) future. Overall, southern portions of the western U.S. are expected to get less recharge in the future and northern portions will get more. Climate change interacts with land surface properties to affect the amount of recharge that occurs in the future. Effects on recharge due to change in vegetation response from projected changes in climate and CO2 concentration, though important, are not considered in this study.Key PointsClimate change interacts with land surface properties to affect the amount of recharge that occurs in the futureSouthern portions of the western U.S. are expected to get less and northern portions more recharge in the futureThe large variability in projected recharge across the GCMs is associated with variability in projected precipitationPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139906/1/grl56569.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139906/2/grl56569_am.pd

    North American monsoon and convectively coupled equatorial waves simulated by IPCC AR4 coupled GCMs

    Get PDF
    This study evaluates the fidelity of North American monsoon and associated intraseasonal variability in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) coupled general circulation models (CGCMs). Twenty years of monthly precipitation data from each of the 22 models' twentieth-century climate simulations, together with the available daily precipitation data from 12 of them, are analyzed and compared with Global Precipitation Climatology Project (GPCP) monthly and daily precipitation. The authors focus on the seasonal cycle and horizontal pattern of monsoon precipitation in conjunction with the two dominant convectively coupled equatorial wave modes: the eastward-propagating Madden-Julian oscillation (MJO) and the westward-propagating easterly waves. The results show that the IPCC AR4 CGCMs have significant problems and display a wide range of skill in simulating the North American monsoon and associated intraseasonal variability. Most of the models reproduce the monsoon rainbelt, extending from southeast to northwest, and its gradual northward shift in early summer, but overestimate the precipitation over the core monsoon region throughout the seasonal cycle and fail to reproduce the monsoon retreat in the fall. Additionally, most models simulate good westward propagation of the easterly waves, but relatively poor eastward propagation of the MJO and overly weak variances for both the easterly waves and the MJO. There is a tendency for models without undiluted updrafts in their deep convection scheme to produce better MJO propagation.open221

    The influence of lateral flow on land surface fluxes in southeast Australia varies with model resolution

    Get PDF
    Land surface models (LSMs) used in climate models typically represent surface hydrology as one-dimensional vertical fluxes, neglecting the lateral movement of water within and between grids. It is assumed that lateral flow of water has a negligible impact on land surface states at climate modelling resolutions of a few tens of kilometres. However, with increases in model resolution, it may be necessary to include lateral flow in LSMs as satellite observations indicate the influence of this process on ecohydrological states, particularly in water limited regions. Lateral flow has not been modelled in Australia, but there is some evidence that this process exerts a dominant influence on vegetation variability in arid and semi-arid Australia. Here we use standalone WRF-Hydro simulations to quantify the influence of overland and shallow subsurface lateral flow on surface fluxes in southeast Australia, and the impact of model resolution on the results. We perform LSM simulations at 1, 4, and 10 km resolutions, with and without lateral flow, to assess the changes in evapotranspiration. Our results show that lateral flow increases evapotranspiration near major river channels in LSM simulations at 4 and 1 km resolutions, consistent with high-resolution observations. The largest changes occur in the warm season after a wet winter, with magnitudes of 50 % or more in some areas. However, the 1 km resolution simulations also exhibit a widespread pattern of drier ridges, different from the coarser resolutions. At 10 km resolution the increases in evapotranspiration are confined to the mountainous regions. Our results suggest that it may be necessary to include lateral flow in LSMs for improved simulations of droughts and future water availability at resolutions higher than 10 km.</p

    Mass balance and hydrological modeling of the Hardangerjøkulen ice cap in south-central Norway

    Get PDF
    A detailed, physically based, one dimensional column snowpack model (Crocus) has been incorporated into the hydrological model, Weather Research and Forecasting (WRF)-Hydro, to allow for direct surface mass balance simulation of glaciers and subsequent modeling of meltwater discharge from glaciers. The new system (WRF-Hydro/Glacier) is only activated over a priori designated glacier areas. This glacier area is initialized with observed glacier thickness and assumed to be pure ice (with corresponding ice density). This allows for melting of the glacier to continue after all accumulated snow has melted. Furthermore, the simulation of surface albedo over the glacier is more realistic, as surface albedo is represented by snow, where there is accumulated snow, and glacier ice, when all accumulated snow is melted. To evaluate the WRF-Hydro/Glacier system over a glacier in southern Norway, WRF atmospheric model simulations were downscaled to 1 km grid spacing. This provided meteorological forcing data to the WRF-Hydro/Glacier system at 100 m grid spacing for surface and streamflow simulation. Evaluation of the WRF downscaling showed a good comparison with in situ meteorological observations for most of the simulation period. The WRF-Hydro/Glacier system reproduced the glacier surface winter/summer and net mass balance, snow depth, surface albedo and glacier runoff well compared to observations. The improved estimation of albedo has an appreciable impact on the discharge from the glacier during frequent precipitation periods. We have shown that the integrated snowpack system allows for improved glacier surface mass balance studies and hydrological studies
    corecore