6,620 research outputs found
Death of Stellar Baryonic Dark Matter
The nature of the dark matter in the haloes of galaxies is one of the
outstanding questions in astrophysics. All stellar candidates, until recently
thought to be likely baryonic contributions to the Halo of our Galaxy, are
shown to be ruled out. Faint stars and brown dwarfs are found to constitute
only a few percent of the mass of the Galaxy. Stellar remnants, including white
dwarfs and neutron stars, are shown to be very constrained as well. High energy
gamma-rays observed in HEGRA data place the strongest constraints, , where is the Hubble constant in units of 100 km
s Mpc. Hence one is left with several unanswered questions: 1)
What are MACHOs seen in microlensing surveys? 2) What is the dark matter in our
Galaxy? Indeed a nonbaryonic component in the Halo seems to be required.Comment: 6 pages ps fil
Massive Compact Halo Objects Viewed from a Cosmological Perspective: Contribution to the Baryonic Mass Density of the Universe
[Abridged] We estimate the contribution of Massive Compact Halo Objects
(Machos) and their stellar progenitors to the mass density of the Universe. If
the Machos that have been detected reside in the Halo of our Galaxy, then a
simple extrapolation of the Galactic population (out to 50 kpc) of Machos to
cosmic scales gives a cosmic density \rho_{Macho} = (1-5) \times 10^9 h \msun
\Mpc^{-3}, which in terms of the critical density corresponds to
. Such a mass density is comparable to
the baryon density implied by Big Bang Nucleosynthesis. If we take the central
values of the estimates, then Machos dominate the baryonic content of the
Universe today, with . However, the
cumulative uncertainties in the density determinations only require that
, where the fraction of
galaxies that contain Machos , and is the Hubble constant
in units of 100 km s Mpc. Our best estimate for
is hard to reconcile with the current best estimates of the baryonic content of
the intergalactic medium indicated by measurements of the Lyman-
forest. We explore the addition constraints that arise if the Machos are white
dwarfs as suggested by the present microlensing data. We discuss the challenges
this scenario presents at both the local and cosmic scales, emphasizing in
particular the constraints on the required mass budget and nucleosynthesis
products (particularly carbon).Comment: 18 pages, LaTeX, uses AASTeX macros. In press, New Astronomy
(submitted Jan. 20, 1998
Simulating a White Dwarf-dominated Galactic Halo
Observational evidence has suggested the possibility of a Galactic halo which
is dominated by white dwarfs (WDs). While debate continues concerning the
interpretation of this evidence, it is clear that an initial mass function
(IMF) biased heavily toward WD precursors (1 < m/Msol < 8), at least in the
early Universe, would be necessary in generating such a halo. Within the
framework of homogeneous, closed-box models of Galaxy formation, such biased
IMFs lead to an unavoidable overproduction of carbon and nitrogen relative to
oxygen (as measured against the abundance patterns in the oldest stars of the
Milky Way). Using a three-dimensional Tree N-body smoothed particle
hydrodynamics code, we study the dynamics and chemical evolution of a galaxy
with different IMFs. Both invariant and metallicity-dependent IMFs are
considered. Our variable IMF model invokes a WD-precursor-dominated IMF for
metallicities less than 5% solar (primarily the Galactic halo), and the
canonical Salpeter IMF otherwise (primarily the disk). Halo WD density
distributions and C,N/O abundance patterns are presented. While Galactic haloes
comprised of ~5% (by mass) of WDs are not supported by our simulations, mass
fractions of ~1-2% cannot be ruled out. This conclusion is consistent with the
present-day observational constraints.Comment: accepted for publication in MNRA
X-ray Amorphous Components of Antarctica Dry Valley Soils: Weathering Implications for Mars
The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation usually occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20C [1]. Substantial work has focused on soil formation in the ADVs [2], however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented [3]. The occurrence of chemical weathering processes are suggested by the presence of clay minerals and iron and titanium oxides in soil. Previously we have investigated soils from two sites in the ADVs and have shown evidence of chemical weathering by the presence of clay minerals (vermiculite, smectite), short-range ordered (SRO) and/or X-ray amorphous materials, and Fe- and Tioxides as well as the presence of discrete calcite crystals [4, 5]. The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 wt. %) of X-ray amorphous materials in a windblown deposit or soil (Rocknest) and in a sedimentary rocks [6,7,8]. The occurrence of large amounts of X-ray amorphous materials in Mars sediments is surprising because these materials are usually present in small quantities in terrestrial environments. The objective of this study is to further characterize the chemistry and mineralogy, specifically the secondary alteration mineralogy and the presence of X-ray amorphous material, of soils from two sites we have previously studied, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. While the chemical alteration processes and mineralogy of the ADV has been documented previously, there has been limited discussion on the occurrence and formation of X-ray amorphous and SRO materials in Antarctica soils. The process of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars, and may lead to a better understanding to the abundance of amorphous material found in sediments in Gale crater
Compressible Flows in Fluidic Oscillators
We present qualitative observations on the internal flow characteristics of
fluidic oscillator geometries commonly referred to as sweeping jets in active
flow control applications. This is part of the fluid dynamics videos.Comment: Videos include
Reduced-order modeling using Dynamic Mode Decomposition and Least Angle Regression
Dynamic Mode Decomposition (DMD) yields a linear, approximate model of a
system's dynamics that is built from data. We seek to reduce the order of this
model by identifying a reduced set of modes that best fit the output. We adopt
a model selection algorithm from statistics and machine learning known as Least
Angle Regression (LARS). We modify LARS to be complex-valued and utilize LARS
to select DMD modes. We refer to the resulting algorithm as Least Angle
Regression for Dynamic Mode Decomposition (LARS4DMD). Sparsity-Promoting
Dynamic Mode Decomposition (DMDSP), a popular mode-selection algorithm, serves
as a benchmark for comparison. Numerical results from a Poiseuille flow test
problem show that LARS4DMD yields reduced-order models that have comparable
performance to DMDSP. LARS4DMD has the added benefit that the regularization
weighting parameter required for DMDSP is not needed.Comment: 14 pages, 2 Figures, Submitted to AIAA Aviation Conference 201
MACHOs, White Dwarfs, and the Age of the Universe
(Abridged Abstract) A favored interpretation of recent microlensing
measurements towards the Large Magellanic Cloud implies that a large fraction
(i.e. 10--50%) of the mass of the galactic halo is composed of white dwarfs. We
compare model white dwarf luminosity functions to the data from the
observational surveys in order to determine a lower bound on the age of any
substantial white dwarf halo population (and hence possibly on the age of the
Universe). We compare various theoretical white dwarf luminosity functions, in
which we vary hese three parameters, with the abovementioned survey results.
From this comparison, we conclude that if white dwarfs do indeed constitute
more than 10% of the local halo mass density, then the Universe must be at
least 10 Gyr old for our most extreme allowed values of the parameters. When we
use cooling curves that account for chemical fractionation and more likely
values of the IMF and the bolometric correction, we find tighter limits: a
white dwarf MACHO fraction of 10% (30%) requires a minimum age of 14 Gyr (15.5
Gyr). Our analysis also indicates that the halo white dwarfs almost certainly
have helium-dominated atmospheres.Comment: Final version accepted for publication, straight TeX formate, 6 figs,
22 page
Increased Science Instrumentation Funding Strengthens Mars Program
As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest
- …
