57 research outputs found
Dynamic buckling and fragmentation in brittle rods
We present experiments on the dynamic buckling and fragmentation of slender
rods axially impacted by a projectile. By combining the results of Saint-Venant
and elastic beam theory, we derive a preferred wavelength lambda for the
buckling instability, and experimentally verify the resulting scaling law for a
range of materials including teflon, dry pasta, glass, and steel. For brittle
materials, buckling leads to the fragmentation of the rod. Measured fragment
length distributions show two clear peaks near lambda/2 and lambda/4. The
non-monotonic nature of the distributions reflect the influence of the
deterministic buckling process on the more random fragmentation processes.Comment: 4 pages, 5 figures, submitted to Physical Review Letter
Quantum corrections for pion correlations involving resonance decays
A method is presented to include quantum corrections into the calculation of
two-pion correlations for the case where particles originate from resonance
decays. The technique uses classical information regarding the space-time
points at which resonances are created. By evaluating a simple thermal model,
the method is compared to semiclassical techniques that assume exponential
decaying resonances moving along classical trajectories. Significant
improvements are noted when the resonance widths are broad as compared to the
temperature.Comment: 9 pages, 4 figure
Optimized Discretization of Sources Imaged in Heavy-Ion Reactions
We develop the new method of optimized discretization for imaging the
relative source from two particle correlation functions. In this method, the
source resolution depends on the relative particle separation and is adjusted
to available data and their errors. We test the method by restoring assumed pp
sources and then apply the method to pp and IMF data. In reactions below 100
MeV/nucleon, significant portions of the sources extend to large distances (r >
20 fm). The results from the imaging show the inadequacy of common Gaussian
source-parametrizations. We establish a simple relation between the height of
the pp correlation function and the source value at short distances, and
between the height and the proton freeze-out phase-space density.Comment: 36 pages (inc. 9 figures), RevTeX, uses epsf.sty. Submitted to Phys.
Rev.
Imaging Sources with Fast and Slow Emission Components
We investigate two-proton correlation functions for reactions in which fast
dynamical and slow evaporative proton emission are both present. In such cases,
the width of the correlation peak provides the most reliable information about
the source size of the fast dynamical component. The maximum of the correlation
function is sensitive to the relative yields from the slow and fast emission
components. Numerically inverting the correlation function allows one to
accurately disentangle fast dynamical from slow evaporative emission and
extract details of the shape of the two-proton source.Comment: 13 pages, 4 figure
Probing Transport Theories via Two-Proton Source Imaging
Imaging technique is applied to two-proton correlation functions to extract
quantitative information about the space-time properties of the emitting source
and about the fraction of protons that can be attributed to fast emission
mechanisms. These new analysis techniques resolve important ambiguities that
bedeviled prior comparisons between measured correlation functions and those
calculated by transport theory. Quantitative comparisons to transport theory
are presented here. The results of the present analysis differ from those
reported previously for the same reaction systems. The shape of the two-proton
emitting sources are strongly sensitive to the details about the in-medium
nucleon-nucleon cross sections and their density dependence.Comment: 23 pages, 11 figures. Figures are in GIF format. If you need
postscript format, please contact: [email protected]
Deuteron life-time in hot and dense nuclear matter near equilibrium
We consider deuteron formation in hot and dense nuclear matter close to
equilibrium and evaluate the life-time of the deuteron fluctuations within the
linear response theory. To this end we derive a generalized linear Boltzmann
equation where the collision integral is related to equilibrium correlation
functions. In this framework we then utilize finite temperature Green functions
to evaluate the collision integrals. The elementary reaction cross section is
evaluated within the Faddeev approach that is suitably modified to reflect the
properties of the surrounding hot and dense matter.Comment: 15 pages, 5 figure
Studies in the statistical and thermal properties of hadronic matter under some extreme conditions
The thermal and statistical properties of hadronic matter under some extreme
conditions are investigated using an exactly solvable canonical ensemble model.
A unified model describing both the fragmentation of nuclei and the thermal
properties of hadronic matter is developed. Simple expressions are obtained for
quantities such as the hadronic equation of state, specific heat,
compressibility, entropy, and excitation energy as a function of temperature
and density. These expressions encompass the fermionic aspect of nucleons, such
as degeneracy pressure and Fermi energy at low temperatures and the ideal gas
laws at high temperatures and low density. Expressions are developed which
connect these two extremes with behavior that resembles an ideal Bose gas with
its associated Bose condensation. In the thermodynamic limit, an infinite
cluster exists below a certain critical condition in a manner similar to the
sudden appearance of the infinite cluster in percolation theory. The importance
of multiplicity fluctuations is discussed and some recent data from the EOS
collaboration on critical point behavior of nuclei can be accounted for using
simple expressions obtained from the model.Comment: 22 pages, revtex, includes 6 figures, submitted to Phys. Rev.
Quantum-Statistical Correlations and Single Particle Distributions for Slowly Expanding Systems with Temperature Profile
Competition among particle evaporation, temperature gradient and flow is
investigated in a phenomenological manner, based on a simultaneous analysis of
quantum statistical correlations and momentum distributions for a
non-relativistic, spherically symmetric, three-dimensionally expanding, finite
source. The parameters of the model emission function are constrained by fits
to neutron and proton momentum distributions and correlation functions in
intermediate energy heavy-ion collisions. The temperature gradient is related
to the momentum dependence of the radius parameters of the two-particle
correlation function, as well as to the momentum-dependent temperature
parameter of the single particle spectrum, while a long duration of particle
evaporation is found to be responsible for the low relative momentum behavior
of the two-particle correlations.Comment: 20 pages + 5 ps figures, ReVTeX, uses psfig.sty, the description is
extended to include final state interactions, phenomenological evaporation
and to fit intermediate energy heavy ion proton and neutron spectrum and
correlation dat
- …
