3,435 research outputs found
The Complicity and Limits of International Law in Armed Conflict Rape
The inauguration of the International Criminal Court and the proliferation of criminal tribunals over the last twenty years are often presented as historic and progressive moments in the trajectory of international law’s response to victims of rape in armed conflicts. However, these moments may signal not only inclusion, but also repression. They signal not just progress, but also a renewed rhetorical and institutional legitimization of colonialism. Historicizing the advent of the International Criminal Tribunal for Rwanda, the International Criminal Tribunal for the Former Yugoslavia, and the International Criminal Court, this Article examines some ways that international law obfuscates its complicity in armed conflict rape, looking particularly at calls within the profession for greater efficiency, nation-state security, and reparations for victims. In doing so, this Article grapples with questions concerning the limits and alternatives to our current legal imagination towards rape in armed conflict
Optical Instrument Survival In A Major Earthquake
Many organizations presently are evaluating the potential loss to plant, equipment and production capability in event of a major earthquake in their area. Often it is found that equipment can be protected at a fraction of the replacement cost. The paper discusses ground accelerations, seismic probability and certain characteristics of earthquake ground motion. Methods for determining loads from the Uniform Building Code and acceleration response spectrums are explained. Protection techniques for optical equipment are presented including rigid anchors, snubbers and sensing systems. The paper is for optical engineers and managers, with no particular background in seismology or structural engineering required
The enigmatic spin evolution of PSR J0537-6910: r-modes, gravitational waves and the case for continued timing
We discuss the unique spin evolution of the young X-ray pulsar PSR
J0537-6910, a system in which the regular spin down is interrupted by glitches
every few months. Drawing on the complete timing data from the Rossi X-ray
Timing Explorer (RXTE, from 1999-2011), we argue that a trend in the
inter-glitch behaviour points to an effective braking index close to ,
much larger than expected. This value is interesting because it would accord
with the neutron star spinning down due to gravitational waves from an unstable
r-mode. We discuss to what extent this, admittedly speculative, scenario may be
consistent and if the associated gravitational-wave signal would be within
reach of ground based detectors. Our estimates suggest that one may, indeed, be
able to use future observations to test the idea. Further precision timing
would help enhance the achievable sensitivity and we advocate a joint observing
campaign between the Neutron Star Interior Composition ExploreR (NICER) and the
LIGO-Virgo network.Comment: 10 pages, 4 figures, emulate ApJ forma
Nuclear Equation of State from Observations of Short Gamma-Ray Burst Remnants
The favoured progenitor model for short -ray bursts (SGRBs) is the
merger of two neutron stars that triggers an explosion with a burst of
collimated -rays. Following the initial prompt emission, some SGRBs
exhibit a plateau phase in their -ray light curves that indicates additional
energy injection from a central engine, believed to be a rapidly rotating,
highly magnetised neutron star. The collapse of this `protomagnetar' to a black
hole is likely to be responsible for a steep decay in -ray flux observed at
the end of the plateau. In this letter, we show that these observations can be
used to effectively constrain the equation of state of dense matter. In
particular, we show that the known distribution of masses in binary neutron
star systems, together with fits to the -ray light curves, provide
constraints that exclude the softest and stiffest plausible equations of state.
We further illustrate how a future gravitational wave observation with Advanced
LIGO/Virgo can place tight constraints on the equation of state, by adding into
the picture a measurement of the chirp mass of the SGRB progenitor.Comment: accepted for publication in Phys. Rev.
Edited NSSL meso-scale upper air network data in southwestern Oklahoma, 1966 and 1967
Cover title."Atmospheric General Circulation Technical Document No. 1.
The dynamics of dissipative multi-fluid neutron star cores
We present a Newtonian multi-fluid formalism for superfluid neutron star
cores, focussing on the additional dissipative terms that arise when one takes
into account the individual dynamical degrees of freedom associated with the
coupled "fluids". The problem is of direct astrophysical interest as the nature
of the dissipative terms can have significant impact on the damping of the
various oscillation modes of the star and the associated gravitational-wave
signatures. A particularly interesting application concerns the
gravitational-wave driven instability of f- and r-modes. We apply the developed
formalism to two specific three-fluid systems: (i) a hyperon core in which both
Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks
in the colour-flavour-locked phase in which a population of neutral K^0 kaons
is present. The formalism is, however, general and can be applied to other
problems in neutron-star dynamics (such as the effect of thermal excitations
close to the superfluid transition temperature) as well as laboratory
multi-fluid systems.Comment: RevTex, no figure
IUE observations of Fe 2 galaxies
Repeated observations of the Seyfert 1 galaxies I Zw 1 and II Zw 136, which have very strong Fe II emission lines in the optical region, were made at low resolution with the IUE Satellite. The ultraviolet spectra are very similar: both are variable and show broad emission features of Fe II (especially the UV multiplets 1, 33, 60, 62, and 63) as well as the emission lines usually strong in Seyferts and quasars. The data strongly support the hypothesis that the optical Fe II emission lines are primarily due to collisional excitation and that resonance fluorescence makes only a minor contribution to the excitation of these lines
Modeling pulsar time noise with long term power law decay modulated by short term oscillations of the magnetic fields of neutron stars
We model the evolution of the magnetic fields of neutron stars as consisting
of a long term power-law decay modulated by short term small amplitude
oscillations. Our model predictions on the timing noise of neutron
stars agree well with the observed statistical properties and correlations of
normal radio pulsars. Fitting the model predictions to the observed data, we
found that their initial parameter implies their initial surface magnetic
dipole magnetic field strength ~ 5E14 G at ~0.4 year old and that the
oscillations have amplitude between E-8 to E-5 and period on the order of
years. For individual pulsars our model can effectively reduce their timing
residuals, thus offering the potential of more sensitive detections of
gravitational waves with pulsar timing arrays. Finally our model can also
re-produce their observed correlation and oscillations of the second derivative
of spin frequency, as well as the "slow glitch" phenomenon.Comment: 10 pages, 6 figures, submitted to IJMPD, invited talk in the 3rd
Galileo-XuGuangqi Meeting}, Beijing, China, 12-16 October 201
Gravitational waves from rapidly rotating neutron stars
Rapidly rotating neutron stars in Low Mass X-ray Binaries have been proposed
as an interesting source of gravitational waves. In this chapter we present
estimates of the gravitational wave emission for various scenarios, given the
(electromagnetically) observed characteristics of these systems. First of all
we focus on the r-mode instability and show that a 'minimal' neutron star model
(which does not incorporate exotica in the core, dynamically important magnetic
fields or superfluid degrees of freedom), is not consistent with observations.
We then present estimates of both thermally induced and magnetically sustained
mountains in the crust. In general magnetic mountains are likely to be
detectable only if the buried magnetic field of the star is of the order of
G. In the thermal mountain case we find that gravitational
wave emission from persistent systems may be detected by ground based
interferometers. Finally we re-asses the idea that gravitational wave emission
may be balancing the accretion torque in these systems, and show that in most
cases the disc/magnetosphere interaction can account for the observed spin
periods.Comment: To appear in 'Gravitational Waves Astrophysics: 3rd Session of the
Sant Cugat Forum on Astrophysics, 2014', Editor: Carlos F. Sopuert
- …
