263 research outputs found
Mild synthesis of poly(HEMA)-networks as well-defined nanoparticles in supercritical carbon dioxide
Free-radical dispersion polymerisation of 2-hydroxyethyl methacrylate was carried out in supercritical carbon dioxide (scCO2) in the presence of stabilisers based on polyethylene oxide (PEO) and poly(heptadecafluorodecyl acrylate) (PFDA). Different architectures of copolymers (random, palm-tree and diblock) were tested for their surface tension, cloud point and as a stabilising agent. The diblock architecture was found to be the best candidate resulting in poly(HEMA) spherical particles with a size of 316 nm. Furthermore, the effect of the CO2-phobic block (PEO) in the diblock architecture was investigated by using three different chain lengths (1000, 2000, 5000 g mol−1). By optimizing the stabiliser composition and structure, mild reaction conditions have been identified allowing us to obtain well-defined spherical cross-linked poly(HEMA) particles with a mean diameter of unprecedented low size (216 nm) at a temperature as low as 35 °C
Photoproduction of π0-pairs off protons and off neutrons
Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of π0π0 pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerator facility in Mainz using the Glasgow photon tagging spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered electron beams of 1508 and 1557MeV, which produced bremsstrahlung in thin radiator foils. The tagged photon beam covered energies up to 1400MeV. The data from the free proton target are in good agreement with previous measurements and were only used to test the analysis procedures. The results for differential cross sections (angular distributions and invariant-mass distributions) for free and quasi-free protons are almost identical in shape, but differ in absolute magnitude up to 15%. Thus, moderate final-state interaction effects are present. The data for quasi-free neutrons are similar to the proton data in the second resonance region (final-state invariant masses up to ≈1550 MeV), where both reactions are dominated by the N(1520)3/2−→Δ(1232)3/2+π decay. At higher energies, angular and invariant-mass distributions are different. A simple analysis of the shapes of the invariant-mass distributions in the third resonance region is consistent with strong contributions of an N⋆→Nσ decay for the proton, while the reaction is dominated by a sequential decay via a Δπ intermediate state for the neutron. The data are compared to predictions from the Two-Pion-MAID model and the Bonn-Gatchina coupled-channel analysis
Quasifree photoproduction of mesons off protons and neutrons
Differential and total cross sections for the quasifree reactions and have been determined at the
MAMI-C electron accelerator using a liquid deuterium target. Photons were
produced via bremsstrahlung from the 1.5 GeV incident electron beam and
energy-tagged with the Glasgow photon tagger. Decay photons of the neutral
decay modes and and coincident recoil nucleons were detected in a combined setup of
the Crystal Ball and the TAPS calorimeters. The -production cross
sections were measured in coincidence with recoil protons, recoil neutrons, and
in an inclusive mode without a condition on recoil nucleons, which allowed a
check of the internal consistency of the data. The effects from nuclear Fermi
motion were removed by a kinematic reconstruction of the final-state invariant
mass and possible nuclear effects on the quasifree cross section were
investigated by a comparison of free and quasifree proton data. The results,
which represent a significant improvement in statistical quality compared to
previous measurements, agree with the known neutron-to-proton cross-section
ratio in the peak of the resonance and confirm a peak in the
neutron cross section, which is absent for the proton, at a center-of-mass
energy MeV with an intrinsic width of MeV
Photoproduction of pi0-mesons off neutrons in the nucleon resonance region
Precise angular distributions have been measured for the first time for the
photoproduction of -mesons off neutrons bound in the deuteron. The
effects from nuclear Fermi motion have been eliminated by a complete kinematic
reconstruction of the final state. The influence of final-state-interaction
effects has been estimated by a comparison of the reaction cross section for
quasi-free protons bound in the deuteron to the results for free protons and
then applied as a correction to the quasi-free neutron data. The experiment was
performed at the tagged photon facility of the Mainz Microtron MAMI with the
Crystal Ball and TAPS detector setup for incident photon energies between
~GeV and ~GeV. The results are compared to the predictions from
reaction models and partial-wave analyses based on data from other isospin
channels. The model predictions show large discrepancies among each other and
the present data will provide much tighter constraints. This is demonstrated by
the results of a new analysis in the framework of the Bonn-Gatchina
coupled-channel analysis which included the present data.Comment: accepted for publication in Phys; Rev. Let
T and F asymmetries in π0 photoproduction on the proton
The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed
Measurement of the transverse target and beam-target asymmetries in meson photoproduction at MAMI
We present new data for the transverse target asymmetry T and the very first
data for the beam-target asymmetry F in the
reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained
with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility
of the Mainz Microtron MAMI. All existing model predictions fail to reproduce
the new data indicating a significant impact on our understanding of the
underlying dynamics of meson photoproduction. The peculiar nodal
structure observed in existing T data close to threshold is not confirmed.Comment: 5 pages, 3 figures, accepted for publication in PR
Measurements of double-polarized compton scattering asymmetries and extraction of the proton spin polarizabilities
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to extract the nucleon spin polarizabilities is through polarized Compton scattering. Double-polarized Compton scattering asymmetries on the proton were measured in the Δ(1232) region using circularly polarized incident photons and a transversely polarized proton target at the Mainz Microtron. Fits to asymmetry data were performed using a dispersion model calculation and a baryon chiral perturbation theory calculation, and a separation of all four proton spin polarizabilities in the multipole basis was achieved. The analysis based on a dispersion model calculation yields γE1E1=−3.5±1.2, γM1M1=3.16±0.85, γE1M2=−0.7±1.2, and γM1E2=1.99±0.29, in units of 10−4 fm4
How does dense phase CO2 influence the phase behaviour of block copolymers synthesised by dispersion polymerisation?
Block copolymers synthesised in supercritical CO2 dispersion undergo in situ self-assembly which can result in a range of nanostructured microparticles. However, our previous study revealed that copolymers with different block combinations possessed different microphase separated morphologies at identical block volume fractions. In this paper, we follow up those initial observations. By examining the phase behaviour of a selection of structurally diverse block copolymers, we explore the structural factors which influence the conflicting self-assembly behaviours. The composition dependence of the morphology is found to be strongly related to the CO2-philicity of the second block relative to poly(methyl methacrylate) (PMMA). Whilst PMMA-b-poly(benzyl methacrylate) (PBzMA) and PMMA-b-poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) phase behaviour follows traditional diblock copolymer phase diagrams, PMMA-b-poly(styrene) (PS) and PMMA-b-poly(4-vinyl pyridine) (P4VP), which comprise blocks with the greatest contrast in CO2-philicity, self-assemble into unexpected morphologies at several different block volume fractions. The morphology of these copolymers in the microparticulate form was found to revert to the predicted equilibrium morphology when the microparticles were re-cast as films and thermally annealed. These findings provide strong evidence that CO2 acts as a block-selective solvent during synthesis. The CO2-selectivity was exploited to fabricate various kinetically trapped non-lamellar morphologies in symmetrical PMMA-b-PS copolymers by tuning the ratio of polymer:CO2. Our data demonstrate that CO2 can be exploited as a facile process modification to control the self-assembly of block copolymers within particles
Measurements of 12C(→γ,pp) photon asymmetries for Eγ= 200–450 MeV
The 12C (→γ ,pp) reaction has been studied in the photon energy range 200-450 MeV at the Mainz microtron MAMI-C, where linearly polarised photons were energy-tagged using the Glasgow-Mainz Tagged Photon Spectrometer and protons were detected in the Crystal Ball detector. The photon asymmetry Σ has been measured over a wider Eγ range than previous measurements. The strongest asymmetries were found at low missing energies where direct emission of nucleon pairs is expected. Cuts on the difference in azimuthal angles of the two ejected protons increased the magnitude of the observed asymmetries. At low missing energies the Σ data exhibit a strong angular dependence, similar to deuteron photodisintegration
Photoproduction of -pairs off protons and off neutrons
Total cross sections, angular distributions, and invariant-mass distributions
have been measured for the photoproduction of pairs off free
protons and off nucleons bound in the deuteron. The experiments were performed
at the MAMI accelerator facility in Mainz using the Glasgow photon tagging
spectrometer and the Crystal Ball/TAPS detector. The accelerator delivered
electron beams of 1508 and 1557~MeV, which produced bremsstrahlung in thin
radiator foils. The tagged photon beam covered energies up to 1400~MeV. The
data from the free proton target are in good agreement with previous
measurements and were only used to test the analysis procedures. The results
for differential cross sections (angular distributions and invariant-mass
distributions) for free and quasi-free protons are almost identical in shape,
but differ in absolute magnitude up to 15\%. Thus, moderate final-state
interaction effects are present. The data for quasi-free neutrons are similar
to the proton data in the second resonance region (final state invariant masses
up to 1550~MeV), where both reactions are dominated by the
decay. At higher energies,
angular and invariant-mass distributions are different. A simple analysis of
the shapes of the invariant-mass distributions in the third resonance region is
consistent with strong contributions of an decay
for the proton, while the reaction is dominated by a sequential decay via a
intermediate state for the neutron. The data are compared to
predictions from the Two-Pion-MAID model and the Bonn-Gatchina coupled channel
analysis.Comment: accepted for publication in Eur. Phys. J.
- …
