1,081 research outputs found
Ultraviolet and soft X--ray photon--photon elastic scattering in an electron gas
We have considered the processes which lead to elastic scattering between two
far ultraviolet or X--ray photons while they propagate inside a solid, modeled
as a simple electron gas. The new ingredient, with respect to the standard
theory of photon--photon scattering in vacuum, is the presence of low--energy,
nonrelativistic electron--hole excitations. Owing to the existence of
two--photon vertices, the scattering processes in the metal are predominantly
of second order, as opposed to fourth order for the vacuum case. The main
processes in second order are dominated by exchange of virtual plasmons between
the two photons. For two photons of similar energy , this gives
rise to a cross section rising like up to maximum of around
~cm, and then decreasing like . The maximal cross
section is found for the photon wavevector , the Fermi surface
size, which typically means a photon energy in the keV range.
Possible experiments aimed at checking the existence of these rare but
seemingly measurable elastic photon--photon scattering processes are discussed,
using in particular intense synchrotron sources.Comment: 33 pages, TeX, Version 3.1, S.I.S.S.A. preprint 35/93/C
Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas
Low energy non linear QED effects in vacuum have been predicted since 1936
and have been subject of research for many decades. Two main schemes have been
proposed for such a 'first' detection: measurements of ellipticity acquired by
a linearly polarized beam of light passing through a magnetic field and direct
light-light scattering. The study of the propagation of light through an
external field can also be used to probe for new physics such as the existence
of axion-like particles and millicharged particles. Their existence in nature
would cause the index of refraction of vacuum to be different from unity in the
presence of an external field and dependent of the polarization direction of
the light propagating. The major achievement of reaching the project
sensitivities in gravitational wave interferometers such as LIGO an VIRGO has
opened the possibility of using such instruments for the detection of QED
corrections in electrodynamics and for probing new physics at very low
energies. In this paper we discuss the difference between direct birefringence
measurements and index of refraction measurements. We propose an almost
parasitic implementation of an external magnetic field along the arms of the
VIRGO interferometer and discuss the advantage of this choice in comparison to
a previously proposed configuration based on shorter prototype interferometers
which we believe is inadequate. Considering the design sensitivity in the
strain, for the near future VIRGO+ interferometer, of in the range 40 Hz Hz leads to a variable
dipole magnet configuration at a frequency above 20 Hz such that Tm/ for a `first' vacuum non linear QED detection
Light propagation in non-trivial QED vacua
Within the framework of effective action QED, we derive the light cone
condition for homogeneous non-trivial QED vacua in the geometric optics
approximation. Our result generalizes the ``unified formula'' suggested by
Latorre, Pascual and Tarrach and allows for the calculation of velocity shifts
and refractive indices for soft photons travelling through these vacua.
Furthermore, we clarify the connection between the light velocity shift and the
scale anomaly. This study motivates the introduction of a so-called effective
action charge that characterizes the velocity modifying properties of the
vacuum. Several applications are given concerning vacuum modifications caused
by, e.g., strong fields, Casimir systems and high temperature.Comment: 13 pages, REVTeX, 3 figures, to appear in Phys. Rev.
Casimir forces and non-Newtonian gravitation
The search for non-relativistic deviations from Newtonian gravitation can
lead to new phenomena signalling the unification of gravity with the other
fundamental interactions. Various recent theoretical frameworks indicate a
possible window for non-Newtonian forces with gravitational coupling strength
in the micrometre range. The major expected background in the same range is
attributable to the Casimir force or variants of it if dielectric materials,
rather than conducting ones, are considered. Here we review the measurements of
the Casimir force performed so far in the micrometre range and how they
determine constraints on non-Newtonian gravitation, also discussing the
dominant sources of false signals. We also propose a geometry-independent
parameterization of all data in terms of the measurement of the constant c. Any
Casimir force measurement should lead, once all corrections are taken into
account, to a determination of the constant c which, in order to assess the
accuracy of the measurement, can be compared with its more precise value known
through microscopic measurements. Although the last decade of experiments has
resulted in solid demonstrations of the Casimir force, the situation is not
conclusive with respect to being able to discover new physics. Future
experiments and novel phenomenological analysis will be necessary to discover
non-Newtonian forces or to push the window for their possible existence into
regions of the parameter space which theoretically appear unnatural.Comment: Also available at http://www.iop.org/EJ/abstract/1367-2630/8/10/23
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
Search for the exotic resonance in the NOMAD experiment
A search for exotic Theta baryon via Theta -> proton +Ks decay mode in the
NOMAD muon neutrino DIS data is reported. The special background generation
procedure was developed. The proton identification criteria are tuned to
maximize the sensitivity to the Theta signal as a function of xF which allows
to study the Theta production mechanism. We do not observe any evidence for the
Theta state in the NOMAD data. We provide an upper limit on Theta production
rate at 90% CL as 2.13 per 1000 of neutrino interactions.Comment: Accepted to European Physics Journal
Prospects for at CERN in NA62
The NA62 experiment will begin taking data in 2015. Its primary purpose is a
10% measurement of the branching ratio of the ultrarare kaon decay , using the decay in flight of kaons in an unseparated
beam with momentum 75 GeV/c.The detector and analysis technique are described
here.Comment: 8 pages for proceedings of 50 Years of CP
Recent NA48/2 and NA62 results
The NA48/2 Collaboration at CERN has accumulated and analysed unprecedented
statistics of rare kaon decays in the modes: () and ()
with nearly one percent background contamination. It leads to the improved
measurement of branching fractions and detailed form factor studies. New final
results from the analysis of 381 rare decay
candidates collected by the NA48/2 and NA62 experiments at CERN are presented.
The results include a decay rate measurement and fits to Chiral Perturbation
Theory (ChPT) description.Comment: Prepared for the Proceedings of "Moriond QCD and High Energy
Interactions. March 22-29 2014." conferenc
- …
